首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到16条相似文献,搜索用时 420 毫秒
1.
采用自制的丙烯酸丁酯-甲基丙烯酸甲酯-乙烯基三乙氧基硅氧烷(BA-MMA-VTES)大分子表面改性剂对纳米氮化硅(Si3N4)陶瓷粉体进行表面包覆改性,将改性后的纳米Si3N4粉体加入到耐水解聚氨酯(Pu)树脂中成革,并进行傅立叶变换红外光谱、透射电子显微镜等分析及力学性能测试。结果表明,BA—MMA—VTES与纳米Si3N4发生化学健合;BA—MMA—VTES质量分数为5%时,纳米Si3N4粒径最小,改性后的纳米Si3N4有良好的分散性能。添加改性纳米Si3N4粉体的PU合成革的力学性能明显提高。  相似文献   

2.
纳米Si3N4粉体表面改性及其在橡胶中的应用研究   总被引:1,自引:0,他引:1  
该文选择含羧基(-COOH)和腈基(-CN)的聚合物作为表面改性剂,研究了对纳米Si3N4粉体湿法改性工艺的影响因素,采用TGA对纳米Si3N4粉体改性效果进行了表征,确定了最佳改性时间(120min左右)、改性温度(60℃左右)和改性剂用量(5%左右)。把在此工艺条件下表面改性后的纳米Si3N4粉体加入橡胶中,当改性纳米Si3N4粉体的用量为生胶的0.5%(质量比)时,所制备的Si3N4/NBR复合材料的撕裂强度、拉伸强度、耐油性能均得到明显的提高。  相似文献   

3.
用钛酸酯偶联剂NDZ-102化学包覆纳米Si3N4陶瓷粉体,通过沉降实验、粒度测定和表面能测试等实验手段研究了改性前后粉体的溶液中稳定性、热重、粒度分布等物性.结果表明:NDZ改性纳米Si3N4粉体为化学改性,添加量为10%时,粉体在甲苯中悬浮性最好;粉体改性后粒径降低,为纳米级分布,表面能也大幅度下降.  相似文献   

4.
纳米氮化硅粉体的大分子改性剂表面修饰研究   总被引:2,自引:0,他引:2  
从分子设计的角度合成了一种新型的大分子表面改性剂(LMPB-g-MAH):采用溶液聚合法将极性单体马来酸酐(MAH)接枝到低分子量的聚丁二烯液体橡胶(LMPB)分子长链中,并用其对纳米氮化硅粉体进行表面修饰;对合成的大分子表面改性剂、改性前后的纳米氮化硅粉体,运用FT-IR、TEM、TGA、粒径分析、沉降实验等方法进行了表征.实验结果表明:马来酸酐已经接枝到低分子量的聚丁二烯液体橡胶分子长链中;当大分子表面改性剂的接枝率为9%~11%、用量为10%~12%、反应温度为65℃、反应时间为3 h时,表面修饰后的纳米氮化硅粉体颗粒粒径减小,有效阻止了纳米颗粒的团聚.  相似文献   

5.
用溶液聚合法合成BA—MAA—AN三元共聚物大分子表面处理剂对纳米Si3N4进行表面处理,大分子表面处理剂包覆在纳米Si3N4的表面,并与其发生了化学作用,可有效地阻止纳米Si3N4粉末的团聚;处理过的Si3N4粒径明显减小,可提高粉体在橡胶中的分散性。用经处理的纳米Si3N4填充三元乙丙橡胶(EPDM)制备了纳米橡胶复合材料,并研究了复合材料的力学性能。结果表明:改性纳米Si3N4的加入在一定程度上提高了EPDM的拉伸强度、撕裂强度、耐磨及动态耐久性能等,其中添加1.5份改性纳米Si3N4效果最好。  相似文献   

6.
本文在水溶液中用表面包覆法对PbO2粉体进行有机改性,并通过正交实验法系统地研究了改性过程中主要因素对改性效果的影响,得到最佳改性工艺。实验结果表明,最佳改性工艺为:改性剂比例为3.5%,pH值为5,温度为55℃,改性剂浓度为4mmol·L-1,改性时间为5h。有机改性剂吸附在PbO2粉体表面,在粉体间形成阻隔,减少了粉体间的团聚现象。  相似文献   

7.
纳米氮化硅粉体的表面改性研究   总被引:1,自引:0,他引:1  
郭辉  张辉 《化工时刊》2009,23(12):24-27
硅烷偶联剂KH550和KH560分别对纳米Si3N4粉体进行表面改性,通过测定改性后纳米Si3N4粉体的活化指数来筛选最佳改性工艺,并评价其分散性。用激光粒度分析仪和傅立叶变换红外光谱仪(FTIR)探测纳米Si3N4粉体的表面改性效果。结果表明:当KH560的添加量为Si3N4的10%,采用60℃×3h工艺改性,活化指数能达到85%以上,改性效果最佳。  相似文献   

8.
表面改性对β-SiC微粉流动性的影响   总被引:2,自引:1,他引:1       下载免费PDF全文
分别以A和B为改性剂对β-SiC微粉进行表面改性,并采用X射线衍射仪(XRD),激光粒度分析仪,扫描电镜(SEM),红外光谱仪,DSC/TGA同步差热分析仪和粉体综合测试仪对改性前后粉体的结构,形貌,粒径大小,表面性质和粉体流动性进行了测试.结果表明:表面改性剂在β-SiC微粉表面形成吸附包覆层,B包覆层厚度大于A包覆层;表面改性不会对粉体的物相和结构产生改变;改性剂包覆层在200~400℃内发生氧化分解;表面改性可以很好地改善粉体的流动性,当B用量达到5wt%时,休止角、平板角分别减小了9°和11°,压缩度从35%减小到16%.  相似文献   

9.
为了促进硅酸钙微粉作为填充材料在塑料中的应用,研究设计了一种对无机粉体进行表面包覆改性的变速式表面改性机.其主要运用于实验室等小规模对精细无机粉体进行表面包覆改性和改性剂配方实验研究.此改性机叶片设计为两片十字交叉的齿形叶片,用低速搅拌和高速粉碎的方式对无机粉体进行包覆处理,用电加热干燥和抽真空的方式除去无机粉体内所含的水分.通过对硅酸钙粉体的改性实验,活化指数高达98%,证明本改性机具有良好的改性效果.  相似文献   

10.
纳米碳酸钙表面改性研究进展   总被引:4,自引:1,他引:3  
简述了纳米碳酸钙的优缺点、表面改性机理、以及纳米碳酸钙的局部化学反应改性、表面包覆改性、胶囊化改性(微乳液改性)、高能表面改性及机械改性等表面改性方法;对表面活性剂、偶联剂、聚合物和无机物等纳米碳酸钙表面改性剂种类进行了综述,并对偶联剂表面改性剂进行了详述;最后对纳米碳酸钙表面改性存在问题和发展方向进行了展望.  相似文献   

11.
加入纳米氮化硅对氮化硅陶瓷性能与结构影响   总被引:2,自引:0,他引:2  
本文以亚微米级氮化硅为起始原料,加入纳米氮化硅来增强基体,添加氧化铝和氧化钇为烧结助剂,等静压成型,采用无压烧结的方式来制备具有优良性能的氮化硅陶瓷。主要研究了纳米氮化硅的分散;纳米氮化硅的加入量对氮化硅陶瓷力学性能的影响;纳米氮化硅的加入量对氮化硅陶瓷使用性能的影响;纳米氮化硅的加入量对氮化硅陶瓷显微结构的影响。研究结果表明:乙醇作为溶剂在分散介质为聚乙二醇的情况下,超声波震荡40分钟时,纳米氮化硅分散效果最好;随纳米氮化硅加入量的增加,显气孔率增加,吸水率增大;加入3wt%的纳米氮化硅时,试样的体积密度最大,抗弯强度、洛氏硬度、断裂韧性最好,具有较理想的显微结构。  相似文献   

12.
王小东  钱家盛 《中国塑料》2008,22(12):44-47
表面改性处理的纳米Si3N4粉体与聚苯硫醚(PPS)熔融共混挤出制成PPS/纳米Si3N4复合材料,通过拉伸、冲击实验及动态力学性能测试考察了纳米粉体加入量对复合体系各项性能的影响。结果表明,纳米Si3N4填充PPS基复合材料的力学性能明显优于纯PPS。随粉体添加量的增加,复合材料的拉伸强度增大,当添加量为0.8 %时,拉伸强度提高了22 %。随粉体添加量的增加,复合体系冲击强度增大,当粉体添加量为1.2 %时,冲击强度和缺口冲击强度出现最大值,分别比纯PPS增加了33 %和41 %。动态力学性能测试表明,随粉体添加量的增加,PPS分子链段松弛所需能量增加,松弛过程增长,体系储能模量降低,损耗模量增加。  相似文献   

13.
张士润 《广东化工》2014,(6):13-14,18
文章采用硅烷偶联剂KH-845-4包覆改性纳米Si3N4陶瓷粉体,通过沉降实验、IR、TG、粒度测定等分析测试手段研究了改性前后粉体的溶剂中悬浮稳定性、热重、粒度分布等物性。结果表明:KH-845-4改性纳米Si3N4粉体为化学改性,添加量为10%时,粉体在甲苯中悬浮性最好;粉体改性后粒径降低,为纳米级分布。  相似文献   

14.
采用硅烷偶联剂(KH-560)对nano-Si3N4进行表面处理,然后以此作为4,4′-二氰酸酯基二苯基甲烷(BCE)的改性剂,制备了nano-Si3N4/BCE电子封装材料,并研究了该体系的静态力学性能、动态力学性能以及介电性能。结果表明:nano-Si3N4的加入提高了材料的冲击强度和弯曲强度,当w(nano-Si3N4)=3%时,冲击强度、弯曲强度分别由纯BCE的10.1 kJ/m2和94.11 MPa提高到14.58 kJ/m2和112.13 MPa;Nano-Si3N4/BCE体系的储能模量在低温区略低于纯BCE体系,在高温区则略高于纯BCE体系;改性体系的介电常数高于纯BCE体系,但介电损耗因子则低于纯BCE体系。  相似文献   

15.
Si3N4粉末表面的非均质成核法包覆及其浆料流变性的研究   总被引:14,自引:0,他引:14  
在研究Si3N4粉末表面包覆工艺及各因素影响规律的基础上,确定了非均质成核法对Si3N4粉末表面包覆改性的最佳工艺范围。利用透射电镜,X射线粒度分布仪,粘度测定仪、zeta电位测定仪对包覆前后Si3N4浆料进行了分析。结果表明:在最佳包覆工艺范围内,Si3N4粉末表面均匀包覆一层Al(OH)3,并包覆后Si3N4浆料的zeta电位发生明显变化,粒度分布更加均匀,流变性能得到明显改善。  相似文献   

16.
以纳米Si3N4和玻璃纤维(GF)混杂增强尼龙6(PA6)复合材料,对PA6复合材料的摩擦学性能进行了实验研究。结果表明,纳米Si3N4和GF混杂可以显著改善PA6复合材料的摩擦学性能,以质量分数3%Si3N4和20%GF混杂填料的耐磨减摩性最好。扫描电子显微镜观察发现,纯PA6的磨损机理以粘着和犁削为主。在PA6/GF复合材料中纳米Si3N4含量较低时,复合材料的磨损机理主要表现为不同程度的粘着磨损,但当复合材料中纳米Si3N4含量较高时,复合材料的磨损机理主要表现为不同程度的粘着磨损和磨粒磨损。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号