首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
ZnO and Ru multilayer thin films are deposited using the sputtering deposition technique at room temperature. The effects of the Ru interlayer thickness and annealing temperature on the properties of multilayer thin films have been studied. An X-ray diffraction study reveals that ZnO layers are highly c-axis-oriented. The use of an Ru interlayer improves the crystalline quality of the subsequently deposited ZnO layers. Moreover, the crystalline quality of the entire structure is further enhanced through thermal annealing in a vacuum. Atomic force microscopy images show that the surface roughness of the multilayer thin films increases with a Ru interlayer thickness greater than 6 nm. The roughness of the film surface increases in correlation with annealing temperatures. This accounts for the decreased optical transmittance of the multilayer thin films annealed at temperatures higher than 450 °C. The electrical resistivity of multilayer thin films decreases with an increase in the metallic interlayer thickness. Thermal annealing at 450 °C causes low resistivity in multilayer thin films. The lowest resistivity reached ~5.4 × 10?4 Ω cm for multilayer films with a 10-nm-thick Ru interlayer annealed at 450 °C.  相似文献   

2.
Lead-free Bi0.5(Na0.8K0.2)0.5TiO3 (abbreviated as BNKT) thin films were grown on Pt(111)/Ti/SiO2/Si substrates using a sol-gel/spin coating technique and were then annealed at different temperatures (350 °C, 550 °C, 750 °C and 850 °C). Analysis of the XRD patterns and FT-IR spectra were used to determine the main reactions and the phase formation process of BNKT thin films during the sol-gel process. The results show that the dielectric constant of the thin films attains a maximum at a set temperature and then decreases at higher annealing temperatures, which can be attributed to phase formation and transformation. Moreover, the morphologies of the BNKT thin films improve with the increase in grain size and the formation of distinct grain boundaries. Furthermore, through increasing the pH of the precursor solutions, the size of the sol-gel colloidal particles increases slightly and the grains formed from the corresponding solutions tend to be small and uniform.  相似文献   

3.
Bismuth ferrite thin films were prepared via sol–gel spin-coating method and the effects of annealing temperature on microstructure, optical, ferroelectric and photovoltaic properties have been investigated. The results show that the bismuth ferrite thin films annealed at 550 °C is single phase and the grain size increases with the rise of annealing temperature. The band gap of bismuth ferrite thin films annealed at 550–650 °C is between 2.306 eV and 2.453 eV. With the rise of the annealing temperature, the remnant polarization gradually decreases and the coercive electric field increases. The short circuit photocurrent density decreases with the rise of annealing temperature, and the open circuit photovoltage and the power conversion efficiency of bismuth ferrite thin films annealed at 550 °C are higher than the thin films annealed at higher temperature.  相似文献   

4.
Ta2O5 thin films deposited via a metal-organic decomposition method were crystallized via atmospheric pressure annealing and a high-pressure crystallization (HPC) process. Ta2O5 thin films started to become crystallized at 700 °C as subjected to atmospheric pressure annealing. When the HPC process was adopted and annealing at 16.5 MPa was performed, the crystallization temperature of Ta2O5 films was greatly dropped to as low as 350 °C. The developed HPC process considerably reduced the thermal budget and energy consumption during film processing. The crystallized Ta2O5 phase was found to be homogeneously distributed within the HPC-derived films. With annealing at 700 °C under atmospheric pressure, the silicon species diffused from the substrates into the Ta2O5 layers, thereby leading to reduced dielectric constants. The HPC process effectively suppressed the interdiffusion between the substrates and dielectric layers by lowering the required heating temperature, and also significantly increased the dielectric constants of Ta2O5 thin films. The HPC process was confirmed to effectively lower the crystallization temperature and improve the dielectric properties of Ta2O5 thin films.  相似文献   

5.
A polycrystalline CuAlO2 single-phase target was fabricated by the conventional solid-state reaction route using Cu2O and Al2O3. Thin films of CuAlO2 were deposited by a pulsed laser deposition process on sapphire substrates at different temperatures. Then, post-annealing was followed at different conditions, and the phase development process of the films was examined. As grown thin films in the temperature range of 450–650 °C were amorphous. The c-axis oriented single phase of CuAlO2 thin films were obtained when the films were post-annealed at 1100 °C in air after growing at 650 °C. Phi-scan of the film clearly showed 12 peaks, each of which are positioned at intervals of 30°. This is thought to be caused by the rhombohedral structured CuAlO2 thin film growing in the states of 30° tilt during the annealing process. Hall effect analysis of the film was carried out.  相似文献   

6.
《Ceramics International》2016,42(5):5754-5761
AZO/Cu/AZO multilayer thin films produced under different annealing conditions are studied in this paper, to examine the effects of atmosphere and annealing temperature on their optical and electrical properties. The multilayer thin films are prepared by simultaneous RF magnetron sputtering (for AZO) and DC magnetron sputtering (for Cu). The thin films were annealed in a vacuum or an atmosphere of oxygen at temperatures ranging from 100 to 400 °C in steps of 100 °C for 3 min. High-quality multilayer films (at Cu layer thickness of 15 nm) with resistivity of 1.99×10−5 Ω-cm and maximum optical transmittance of 76.23% were obtained at 400 °C annealing temperature in a vacuum. These results show the films to be good candidates for use as high quality electrodes in various displays applications.  相似文献   

7.
Highly nanocrystalline ZnO modified methyl glycol thin films have been deposited on a p-type silicon substrate via the sol–gel spin coating manner. The morphology of the as-deposited film was scrutinized using scanning electron microscopy. IV characteristics of the as-prepared ZnO film under vacuum and in open air were monitored. The results showed that the ZnO films have a barrier height of 0.38 eV under vacuum and 0.62 eV in open air. The Schottky barrier height between ZnO grains was determined for different reducing gases. The ZnO film showed high sensitivity to H2S gas compared with other reducing gases due to the reduction of barrier height between ZnO grains. The as-prepared ZnO film was annealed at four different temperatures. X-ray diffraction manifested that the wurtzite hexagonal structure of ZnO deviated from ideality at annealing temperature greater than 650 °C. The barrier height of ZnO film decreased due to the increase of annealing temperature up to 650 °C and then decreased. The results also confirmed that the change of barrier height strongly affected the sensitivity of ZnO film.  相似文献   

8.
The Bi1.5MgNb1.5O7 (BMN) thin films were prepared on Au-coated Si substrates by rf magnetron sputtering. We systematically investigated the structure, dielectric properties and voltage tunable property of the films with different annealing temperatures. The relationships of leakage current and breakdown bias field with annealing temperature were firstly studied and a possible explanation was proposed. The deposited BMN thin films had a cubic pyrochlore phase when annealed at 550 °C or higher. With the increasing of annealing temperature, the dielectric constant and tunability also went up. BMN thin films annealed at 750 °C exhibited moderate dielectric constant of 106 and low dielectric loss of 0.003–0.007 between 10 kHz and 10 MHz. The maximum tunability of 50% was achieved at a bias field of 2 MV/cm. However, thin films annealed at 750 °C had lower breakdown bias field and higher leakage current density than films annealed below 750 °C. The excellent physical and electrical properties make BMN thin films promising for potential tunable capacitor applications.  相似文献   

9.
Thin-films of La2Ti2O7 were obtained by dip-coating process using a precursor salt in nitric acid solution. The effects of solution concentration, withdrawal speed, post-annealing duration and temperature were investigated both on grain size and orientation of the La2Ti2O7 thin layers. In addition, a target with the required stoichiometry for PVD deposition of La-substituted Bi4Ti3O12 (BLT) was successfully sintered by spark plasma sintering (SPS) at 750 °C. Finally (0 1 1)-oriented BLT ferroelectric films have been grown by RF sputtering on (1 1 0)-oriented La2Ti2O7 polycrystalline thin-film. A preferential orientation of BLT thin films has been obtained after annealing at a temperature lower than 650 °C.  相似文献   

10.
An indium-tin-oxide (ITO) thin film with approximately 50 nm thickness was successfully synthesized on glass substrates by using a fully aqueous sol-gel process. The sol was prepared from indium nitrate hydrate and tin fluoride as a precursor. Thermogravimetric analysis confirmed that the sol converted into crystalline ITO at 286 °C. The optical band gap and transmittance of the thin film were observed to increase with annealing temperature and plasma treatment time. X-ray photoelectron spectroscopy and transmittance studies established that the number of oxygen vacancies in the thin film drastically increased with increasing temperature and plasma treatment. The annealing temperature and argon plasma treatment time appear to be key factors in reducing resistivity and increasing the transmittance of the thin film. A considerable decrease in the resistivity of the ITO thin film was observed after Ar plasma treatment. This eco-friendly sol-gel ITO thin film may find potential applications in n-type ohmic electrodes for ink-jet printable electronics.  相似文献   

11.
Rapid synthesis of long calcium copper titanate (CCTO) nanorods was carried out by sequential annealing. CCTO thin films have been deposited on p-Si substrate by RF sputtering technique and afterwards, the samples were thermally treated using a preheated furnace by varying the annealing temperature from 850 °C to 1100 °C. CCTO nanorods of 12 µm lengths and 400–600 nm diameters were synthesized at 1100 °C. Based on the FESEM observations, a plausible growth mechanism has been proposed to explain the formation of nanorods. The (220) XRD peak of the CCTO film became prominent for the annealing temperature of 950 °C. The presence of nanoscale crystals in amorphous matrix has been observed by HRTEM studies. The elemental mapping of CCTO nanorod has shown a spatial variation of elements throughout the nanorod. The oxide and interface charge density was found to be increased with the rise in annealing temperature.  相似文献   

12.
This paper presents the optimal atmosphere annealing conditions for Mn1.2Co1.5Ni0.3Oδ ceramic thin films fabricated by the RF magnetron sputtering method. The microstructure and oxygen distribution, together with electrical properties, are combined and applied for determining thermal stability. All of the Mn1.2Co1.5Ni0.3Oδ films, which are annealed at various oxygen atmosphere from 1 × 10?3 to 1 × 105 Pa, exhibit a negative temperature coefficient characteristic and show a poly-crystalline spinel structure. The film which annealed at 10 Pa with the most uniform and most dense surface morphology has the minimum resistivity compared to the others. It is characterized by the highest Mn3+ and Mn4+ pair content, which gives the highest carrier concentration of ceramic films. Combined with the aging test at 125 °C for 500 h, the films annealed at 10 Pa have the minimum resistance drift (ΔR/R0 = 2.35%), which is mainly affected by the oxygen vacancy concentration. This demonstrates that the film thermistors annealed in a hypoxia state will never be stable. This is because there will be several oxidation reactions leading to a continuous generation of cationic vacancies during high temperature aging. The present results will open a way to design desired stable negative temperature coefficient thermistors by adjusting the annealing oxygen atmosphere of films.  相似文献   

13.
A novel kind of dense MoSi2-SiC-Si coating was prepared on the surface of graphite substrate by slurry dipping and vapor silicon infiltration process. Mo-SiC-C precoating was fabricated via slurry dipping method, and then MoSi2-SiC-Si coating with dense structure consisting of Si, MoSi2 and SiC was obtained by vapor silicon infiltration process. The isothermal oxidation tests at temperatures from 800 to 1600 °C and TGA test from room temperature to 1500 °C were used to evaluate the oxidation resistance ability of the MoSi2-SiC-Si coating. The experimental results indicate that the prepared coating has good oxidation protection ability at a wide temperature range from room temperature to 1600 °C. Meanwhile, the oxidation of the coated samples is a weight gain process at temperatures from 800 to 1500 °C due to the formed SiO2 layer on the surface of coating. After oxidation for 220 h at 1600 °C, the weight loss of the coated sample was only 0.96%, which is considered to be the excessive consumption of the outer coating and the appearance of defects in the coating. Two layers can be observed in the coating after oxidation, namely, SiO2 layer and MoSi2-SiC-Si layer.  相似文献   

14.
Effects of oxidation cross-linking and sintering temperature on the microstructure evolution, thermal conductivity and electrical resistivity of continuous freestanding polymer-derived SiC films were investigated. The as-received films consisting of β-SiC nanocrystals embedded in amorphous SiOxCy and free carbon nanosheets were fabricated via melt spinning of polycarbosilane (PCS) precursors and cured for 3 h/10 h followed by pyrolysis from 900 °C to 1200 °C. Results reveal that nanoscale structure (β-SiC/SiOxCy/Cfree) provides an ingenious strategy for constructing highly thermal conductive, highly insulating and highly flexible complexes. In particular, the 3 h-cured films sintered at 1200 °C with satisfying thermal conductivity (46.8 W m?1 K?1) and electrical resistivity (2.1 × 108 Ω m) are suitable for the realization of high-performance substrates. A remarkable synergistic effect (lattice vibration of β-SiC nanocrystals and close-packed SiOxCy, free-electron heat conduction of β-SiC and free carbon, and supporting role of oxygen vacancy) contributing to thermal conductivity improvement is proposed based on the analysis of microstructure, intrinsic properties and simulations. Eventually, the SiC films without additional dielectric layers are directly silk-screen printed with high-temperature silver paste and used as heat dissipation substrates for high-power LED devices via chip-on-board (COB) package. The final devices can emit bright light with low-junction temperature (52.6 °C) and good flexibility owing to the mono-layer SiC substrate with low thermal resistance and desirable mechanical properties. This work offers an effective approach to design and fabricate flexible heat dissipation ceramic substrates for thermal management in advanced electronic packaging fields.  相似文献   

15.
《Ceramics International》2017,43(14):10737-10742
Bi1.5Zn1.0Nb1.5O7 (BZN) thin films with thickness from 60 nm to 200 nm were prepared by radio-frequency magnetron sputtering and post-annealed from 550 °C to 650 °C. The x-ray diffraction results indicated that the BZN thin films possessed a cubic pyrochlore phase. The BZN thin films exhibited thickness-independent dielectric properties with dielectric constant of ~180 and low loss tangent less than 1% at 10 kHz as the film thickness decreased to 60 nm. The BZN thin films with thickness of 200 nm and post-annealed at 650 °C had a tunability of 32.7% at a DC bias field of 1.5 MV/cm. The results suggest that the BZN thin films have promising applications on the embedded capacitors, tunable devices and energy storage devices.  相似文献   

16.
《Ceramics International》2016,42(12):13697-13703
Cu–Cr–O films were prepared by DC magnetron co-sputtering using Cu and Cr targets on quartz substrates. The films were then annealed at temperatures ranging from 400 °C to 900 °C for 2 h under a controlled Ar atmosphere. The as-deposited and 400 °C-annealed films were amorphous, semi-transparent, and insulated. After annealing at 500 °C, the Cu–Cr–O films contained a mixture of monoclinic CuO and spinel CuCr2O4 phases. Annealing at 600 °C led to the formation of delafossite CuCrO2 phases. When the annealing was further increased to temperatures above 700 °C, the films exhibited a pure delafossite CuCrO2 phase. The crystallinity and grain size also increased with the annealing temperature. The formation of the delafossite CuCrO2 phase during post-annealing processing was in good agreement with thermodynamics. The optimum conductivity and transparency were achieved for the film annealed at approximately 700 °C with a figure of merit of 1.51×10−8 Ω−1 (i.e., electrical resistivity of up to 5.13 Ω-cm and visible light transmittance of up to 58.3%). The lower formation temperature and superior properties of CuCrO2 found in this study indicated the higher potential of this material for practical applications compared to CuAlO2.  相似文献   

17.
《Ceramics International》2017,43(15):11874-11878
Ultraviolet (UV) irradiation-assisted thermal annealing is used for the fabrication of Mg doped InZnO (MIZO) semiconductor thin films and metal-semiconductor-metal (MSM) type photodetectors on alkali-free glasses at a low temperature of 300 °C. In this study, the effects of UV irradiation time on the structural features and the optical and electrical properties of sol-gel derived MIZO thin films were investigated, and the photoresponse properties of MIZO photodetectors fabricated using UV-assisted thermal annealing (UV-TA) and conventional thermal annealing (CTA) were compared. The molar ratio of In:Zn was fixed at 3:2, and the Mg content was maintained at 20 at% ([Mg]/[In+Zn]) in the precursor solution. After a spin-coating and drying procedure was performed twice, the dried sol-gel films were heated on a hotplate at 300 °C and exposed to UV irradiation in ambient air. The UV irradiation time was adjusted to 1, 2, 3, and 4 h. All annealed MIZO thin films had a dense microstructure, uniform film thickness, and flat surface and exhibited good optical transmittance (> 86.0%). The mean resistivity decreased with increasing irradiation time, and the samples irradiated for 4 h exhibited the lowest mean resistivity of 4.4×102 Ω-cm. Current-voltage (I-V) characteristics showed that the MIZO photodetectors operated in the photoconductive mode. Under illumination with UVC light, the MIZO photodetectors exhibited an Ilight-to-Idark ratio of 7.7 × 102 and had a photoresponsivity of 5.0 A/W at a bias of 5 V.  相似文献   

18.
BaTiO3 is a typical ferroelectric material with high relative permittivity and has been used for various applications, such as multilayer ceramic capacitors (MLCCs). With the tendency of miniaturization of MLCCs, the thin films of BaTiO3 have been required. In this work, BaTiO3 thin films have been deposited on Pt-coated Si substrates by RF magnetron sputtering under different deposition conditions. The films deposited at the substrate temperature from 550 °C–750 °C show a pure tetragonal perovskite structure. The films deposited at 550 °C–625  °C exhibit (111) preferential orientation, and change to (110) preferential orientation when deposited above 650 °C. The film morphologies vary with working pressure and substrate temperature. The film deposited at 625 °C and 4.5 Pa has the relative permittivity of 630 and the loss tangent of 2% at 10 kHz.  相似文献   

19.
ZnO thin films were successfully deposited on SiO2/Si substrate by sol–gel technology. The as-grown ZnO thin films were annealed under an ambient atmosphere from 600 to 900 °C by rapid thermal annealing (RTA) process. X-ray diffraction and scanning electron microscopy analyses reveal the physical structures of ZnO thin films. From PL measurement, two ultraviolet (UV) luminescence bands were obtained at 375 and 380 nm, and the intensity became stronger when the annealing temperature was increased. The strongest UV light emission appeared at annealing temperature of 900 °C. The chemical bonding state in ZnO films was investigated by using X-ray photoelectron spectrum. The mechanism of UV emission was also discussed.  相似文献   

20.
《Ceramics International》2016,42(8):9341-9346
BaSn0.15Ti0.85O3 (BTS) thin films were deposited on Pt/Ti/SiO2/Si(1 0 0) substrate by pulsed laser deposition and the effects of substrate temperature on their structure, dielectric properties and leakage current density were investigated. The results indicate that the substrate temperature has a significant effect on the structural and dielectric properties of the BTS thin films which exhibit a polycrystalline perovskite structure if the substrate temperature ranges within 550–750 °C. The dielectric constant and loss tangent of the BTS thin films deposited at 650 °C are 341 and 0.009 at 1 MHz, respectively, the tunability is 72.1% at a dc bias field of 400 kV/cm, while the largest figure of merit (FOM) is 81.1. The effect of the substrate temperature on the leakage current of the BTS thin films is discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号