首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
《应用化工》2017,(4):681-684
采用沉淀法对层状LiNi_(0.5)Co_(0.2)Mn_(0.3)O_2正极材料进行Y_2O_3表面包覆,采用X射线衍射(XRD)、扫描电子显微镜(SEM)、电化学交流阻抗(EIS)及恒流充放电对所制备材料的结构、形貌及电化学性能进行表征。结果表明,Y_2O_3均匀包覆在LiNi_(0.5)Co_(0.2)Mn_(0.3)O_2材料的表面,并没有改变材料的晶体结构,且Y_2O_3包覆的正极材料表现出良好的电化学性能。在2.5~4.5 V电压范围和20 mA/g电流密度下,包覆0.5%Y_2O_3材料的首次放电容量190.5 mAh/g,50次循环后,材料的容量保持率达到99.9%,而未包覆材料的首次放电容量略低(187.0 mAh/g),且容量衰减较快,50次循环后,材料的容量保持率仅有92.7%。此外,包覆0.5%Y_2O_3的材料在400 mA/g下放电容量仍有150 mAh/g,表现出优异的倍率性能。  相似文献   

2.
《应用化工》2022,(4):681-684
采用沉淀法对层状LiNi_(0.5)Co_(0.2)Mn_(0.3)O_2正极材料进行Y_2O_3表面包覆,采用X射线衍射(XRD)、扫描电子显微镜(SEM)、电化学交流阻抗(EIS)及恒流充放电对所制备材料的结构、形貌及电化学性能进行表征。结果表明,Y_2O_3均匀包覆在LiNi_(0.5)Co_(0.2)Mn_(0.3)O_2材料的表面,并没有改变材料的晶体结构,且Y_2O_3包覆的正极材料表现出良好的电化学性能。在2.54.5 V电压范围和20 mA/g电流密度下,包覆0.5%Y_2O_3材料的首次放电容量190.5 mAh/g,50次循环后,材料的容量保持率达到99.9%,而未包覆材料的首次放电容量略低(187.0 mAh/g),且容量衰减较快,50次循环后,材料的容量保持率仅有92.7%。此外,包覆0.5%Y_2O_3的材料在400 mA/g下放电容量仍有150 mAh/g,表现出优异的倍率性能。  相似文献   

3.
以Zr(NO_3)_4·5H_2O和CH_3COOLi·2H2_O为原料,采用湿化学法,将Li_2ZrO_3包覆在LiNi_(0.8)Co_(0.1)Mn_(0.1)O_2锂离子电池正极材料的表面,研究Li_2ZrO_3不同包覆比例对LiNi_(0.8)Co_(0.1)Mn_(0.1)O_2电化学性能的影响。SEM、TEM、EDS谱图分析表明,Li_2ZrO_3层均匀地包覆在LiNi_(0.8)Co_(0.1)Mn_(0.1)O_2表面,其厚度约为8 nm。与纯相相比,1%(质量分数)Li_2ZrO_3包覆的LiNi_(0.8)Co_(0.1)Mn_(0.1)O_2复合材料在1.0 C下首次放电比容量为184.7 mA·h·g~(-1)、100次循环之后放电比容量为169.5 mA·h·g~(-1),其容量保持率达到91.77%,表现出良好的循环稳定性。循环伏安(CV)和电化学阻抗(EIS)测试结果表明,Li_2ZrO_3包覆层抑制了正极材料与电解液之间的副反应,减小了材料在循环过程中的电荷转移阻抗,从而提高了材料的电化学性能。  相似文献   

4.
采用湿化学法,对高镍正极材料LiNi_(0.8)Co_(0.1)Mn_(0.1)O_2进行不同比例的Co_3O_4表面包覆改性研究。利用XRD、SEM、TEM等测试手段对包覆前后样品的晶体结构和表面形貌进行了表征,并对各样品的电化学性能进行了测试。其中0.5%(wt)Co_3O_4包覆的LiNi_(0.8)Co_(0.1)Mn_(0.1)O_2样品表现出最佳的首次充放电性能、循环性能和高温稳定性能。在55℃下循环180圈后,仍具有142.9 mA·h·g~(-1)的放电比容量,容量保持率为63.7%。同时借助电化学阻抗(EIS)测试对改性的原因进行了分析。  相似文献   

5.
镍钴铝酸锂(LiNi_(0.8)Co_(0.15)Al_(0.05)O_2,NCA)因具有高能量密度、高性价比等优点,被视为最具发展潜力的动力锂电池正极材料.但NCA在使用过程中安全性、循环稳定性、高温性能较差,需要通过离子掺杂、表面包覆等方式改性,以改善材料的电化学性能.本工作对NCA的改性研究进行总结,并展望了未来的研究方向.  相似文献   

6.
采用高温固相法对正极材料LiNi_(0.85)Co_(0.15)O_2进行Al掺杂,研究了Al及其含量对材料结构、电化学性能和热稳定性的影响。结果表明:Al可进入LiNi_(0.85)Co_(0.15)O_2晶格,占据Ni原子位置。随着掺Al量增加:材料的晶胞参数a降低、c增大、阳离子混排程度先增加后减小,晶体密度减小;电极极化逐渐增强,放电比容量依次降低,循环性能明显改善,热稳定性提高。Al掺量为5%时,LiNi_(0.85–x)Co_(0.15)Al_xO_2综合性能达到最优。掺Al不能抑制LiNi_(0.85–x)Co_(0.15)Al_xO_2在电化学循环中由H1到H2相转变,但有利于稳定材料的H2相结构,从而提高材料的综合性能。  相似文献   

7.
三元正极材料在高能量密度和低成本方面表现出吸引人的性能。然而,这些材料容易在颗粒表面发生降解。所以,在这项工作中选用氧化钕作为涂层包覆在三元正极材料Li[Ni_(0.6)Co_(0.2)Mn_(0.2)]O_2表面,并进行了一系列表征测试。测试结果显示包覆前后材料具有相同的物相与相似的形貌。当Nd_2O_3的包覆量为x=0.03时,Li[Ni_(0.6)Co_(0.2)Mn_(0.2)]O_2的电化学性能得到提高,即使在5C倍率下,放电容量仍能达到113.2 mAh·g~(-1)。在0.2C下100次循环后容量保持率为88.2%。因此通过氧化钕的包覆可以提高材料的结构稳定性以及电化学动力学。  相似文献   

8.
将商业化尖晶石材料Li Mn2O4(LMO)和层状三元正极材料LiMn_2O_4/LiNi_(0.8)Co_(0.15)Al_(0.05)O_2(NCA)按照一定比例混合,考察混合工艺对两种电极材料结构和电化学性能的影响。结果表明,球磨后混合材料的粒径减小;同时LMO的引入改善了NCA的循环稳定性和倍率性能,当LMO∶NCA的混合配比为7∶3时,混合材料具有最佳的性能,其50次循环后的容量保留率为94.89%,5 C倍率下的放电容量为90.2 m Ah/g;充放电测试表明球磨混合材料循环性能稳定,50次循环后容量保持率较高;球磨混合也改善了NCA的高倍率性能。  相似文献   

9.
采用静电纺丝技术结合低温固相煅烧合成了中空多孔的LiNi_(0.8)Mn_(0.1)Co_(0.1)O_2纳米纤维,并通过球磨方式实现了碳纳米管表面修饰LiNi_(0.8)Mn_(0.1)Co_(0.1)O_2纳米纤维。采用TG-DTA、XRD、SEM等分析手段,对合成样品的煅烧温度、物相结构和微观形貌进行表征,然后对其综合电化学性能进行研究。结果表明:CNT表面修饰LiNi_(0.8)Mn_(0.1)Co_(0.1)O_2纳米纤维可显著改善材料的综合电化学性能。其首次放电比容量达到242.8m Ah/g,1C循环50次后容量保持率达到91.61%,2C倍率放电比容量达到165.8m Ah/g。CNT独特的管状结构,促进了LiNi_(0.8)Mn_(0.1)Co_(0.1)O_2纳米纤维比容量的发挥,同时为循环过程中电极体积变化提高缓冲层,改善了材料的电子电导率,结合LiNi_(0.8)Mn_(0.1)Co_(0.1)O_2纳米纤维中空多孔结构为锂离子快速扩散提供了通道,从而实现了LiNi_(0.8)Mn_(0.1)Co_(0.1)O_2纳米纤维比容量、倍率和循环性能的显著提高。  相似文献   

10.
采用3种含铝化合物(AlPO_4、Al_2O_3和AlF_3)对富锂锰基材料Li_(1.2)[Mn_(0.54)Co_(0.13)Ni_(0.13)] O_2进行表面包覆改性,研究了表面包覆对富锂锰基材料的首圈库伦效率和循环性能的影响。结果表明与原始的Li_(1.2)[Mn_(0.54)Co_(0.13)Ni_(0.13)] O_2的库伦效率(71.0%)相比经过AlPO_4表面包覆改性的Li_(1.2)[Mn_(0.54)Co_(0.13)Ni_(0.13)] O_2库伦效率最高达到了86.3%。经过50圈循环后相比于原始的Li_(1.2)[Mn_(0.54)Co_(0.13)Ni_(0.13)] O_2的容量保持率(58.9%),由Al_2O_3表面包覆改性的容量保持率提高最大,为96.1%。经过AlF_3表面包覆改性的Li_(1.2)[Mn_(0.54)Co_(0.13)Ni_(0.13)] O_2综合性能最佳,其首圈库伦效率达到了81.1%,容量保持率达到了92.4%。  相似文献   

11.
采用干湿结合回收技术回收了废旧锌锰干电池中的锰,讨论了硝酸浓度对碳酸锰回收率的影响。将得到的碳酸锰作为锰源,采用溶胶凝胶法制备了三元正极材料LiNi_(1/3)Co_(1/3)Mn_(1/3)O_2。通过沉积法使氢氧化铝胶体沉积在材料表面对三元正极材料进行表面包覆改性。而且对所得产品进行了XRD、TEM表征和电化学性能检测。结果表明,少量包覆不会改变材料的层状结构,材料首次放电比容量达到152 m A·h/g,且提高了循环性能,循环充放电100次后,放电比容量为117.3 m A·h/g。  相似文献   

12.
三元正极材料(LiNi_(1/3)Co_(1/3)Mn_(1/3)O_2)具有较好的安全性能和循环性能,兼顾了其它二元电极材料的诸多优点,成为目前高性能锂离子电池正极材料的研究重点之一,其市场占有率已经超过40%。详细叙述了近年来国内外对三元正极材料的制备和改性所做的研究,着重介绍了其高温固相法、共沉淀法、溶胶-凝胶法等制备方法及掺杂、包覆改性方法对LiNi_(1/3)Co_(1/3)Mn_(1/3)O_2电化学性能的影响,以及这些改性方法存在的问题。  相似文献   

13.
采用湿法制备了聚乙烯吡咯烷酮(PVP)辅助尖晶石型LiMn204包覆LiNi_(0.6)Co_(0.2)Mn_(0.2)O_2复合正极材料(LMO@NCM)。以X射线粉末衍射仪、扫描电子显微镜和透射电子显微镜技术对正极材料的晶体结构、形貌进行表征。采用充放电测试、电化学阻抗谱(EIS)和循环伏安法(CV)研究正极材料的电化学性能。结果表明,乙酸锰添加量为1.0%(质量分数)的LMO@NCM正极材料具有高容量、良好的倍率与循环性能。该样品0.2C首次放电容量达182.7 mAh/g,在0.5C倍率下循环50次后其容量保持率为83.7%。PVP辅助的尖晶石型LiMn_2O_4包覆层提高材料的电子导电率,抑制了电极界面的副反应,进而提高了材料的电化学性能。  相似文献   

14.
采用湿法融合技术及高温固相法合成Li_3VO_4包覆的LiNi_(0.8)Co_(0.1)Mn_(0.1)O_2正极材料。通过X射线衍射(XRD)、扫描电子显微镜(SEM)、透射电子显微镜(TEM)等方法研究材料的结晶相、形貌、微观结构。研究表明,Li_3VO_4均匀地包覆在Li Ni0.8Co0.1Mn0.1O_2表面,未改变原材料的材料结构和形貌,包覆层厚度为1~2 nm。不同含量的Li_3VO_4对LiNi_(0.8)Co_(0.1)Mn_(0.1)O_2正极材料进行修饰研究表明,3%(质量)Li_3VO_4包覆的LiNi_(0.8)Co_(0.1)Mn_(0.1)O_2在1 C下100次循环后容量保持率为94.13%,具有最佳的倍率性能和循环性能。此外,循环伏安(CV)和交流阻抗(EIS)分析表明,Li_3VO_4能提高Li+电导率,抑制活性材料与电解液之间的副反应,提高材料的电化学性能。  相似文献   

15.
以不同预氧化方式制备的前驱体合成了锂离子电池正极材料LiNi_(0.8)Co_(0.15)Al_(0.05)O_2(LNCAO)。采用扫描电子显微镜、X射线衍射和化学滴定对样品及其前驱体的形貌、晶相结构和Ni的平均氧化态进行表征,并采用恒电流充放电方法对样品进行充放电性能测试。结果表明:预氧化方式不影响前驱体或样品的形貌,但对晶相结构、Ni的平均氧化态及样品的电化学性能有很大的影响,且前驱体中Ni的平均氧化态越高,相应样品的电化学性能越好。其中,“液-液预氧化”方式制备的前驱体为Ni0.8Co0.15Al0.05OOH,Ni的平均氧化态为+3.000;该前驱体在氧气气氛下750℃焙烧10 h得到的LNCAO正极材料,阳离子混排程度最小,结构最有序,Ni的平均氧化态最高,电化学性能最好;在2.8~4.3 V(vs.Li/Li+)电压,0.2C倍率时的首次放电比容量达192.1 m A·h/g,循环50次后容量保持率为94.8%。  相似文献   

16.
采用溶胶-凝胶法制备了LiNi_(0.5)Mn_(1.5)O_4正极材料,并利用Zn F2对其表面进行包覆改性。XRD、SEM和TEM测试表明,包覆处理不影响材料的晶体结构,2%(质量分数,以LiNi_(0.5)Mn_(1.5)O_4质量计,下同)的Zn F2在LiNi_(0.5)Mn_(1.5)O_4表面形成了约7 nm厚均匀包覆层。对未包覆的LiNi_(0.5)Mn_(1.5)O_4和1%、2%、3%的Zn F2包覆后的LiNi_(0.5)Mn_(1.5)O_4的电化学性能进行了考察,发现Zn F2包覆能够减弱电解液与LiNi_(0.5)Mn_(1.5)O_4正极材料之间的相互作用,稳定电极表面,提高材料的电化学性能。其中,2%Zn F2包覆样品表现出最佳的循环性能和倍率性能,0.2C电流倍率下循环200圈后,其放电比容量维持在109.0 m A·h/g,保持率为79.7%;5 C电流倍率下循环500圈后,放电比容量维持在94.2 m A·h/g,保持率为85.6%。  相似文献   

17.
以Ni_(0.5)Co_(0.2)Mn_(0.3)(OH)_2前驱体和Li_2CO_3为原料,在空气气氛下采用适当的烧结工艺制备了LiNi_(0.5)Co_(0.2)Mn_(0.3)O_2锂离子电池正极材料。采用振实密度仪、SEM和XRD等方法对材料烧结前后的密度、形貌与结构进行表征,并对烧结后的锂离子电池正极材料的电化学性能进行测试。结果表明烧结制备的LiNi_(0.5)Co_(0.2)Mn_(0.3)O_2正极材料混排因子c/a为4.9421,阳离子混排程度低I(003)/I(104)为2.222,层状结构明显。在2.8~4.3 V、0.2 C和0.5 C下,LiNi_(0.5)Co_(0.2)Mn_(0.3)O_2正极材料的首次放电比容量为153.6 m Ah·g~(-1)和146.5 mAh·g~(-1),首次充放电效率分别为81.2%和78.8%,循环80次后容量分别保持为130.2 mAh·g~(-1)和128.1 mAh·g~(-1),容量保持率都在85%以上,具有良好的电化学性能。  相似文献   

18.
通过沉淀法对高镍LiNi_(0.6)Co_(0.2)Mn_(0.2)O_2正极材料进行了LaF_3包覆,采用了X射线衍射(XRD)、扫描电子显微镜(SEM)、X射线能谱仪(EDS)、恒流充放电测试和电化学交流阻抗(EIS)对材料的结构、形貌、成分和电化学性能进行了表征,系统的研究了LaF_3包覆对材料的性能影响。结果表明,LaF_3在Li Ni0.6Co0.2Mn0.2O2材料表明形成了均匀的包覆层,LaF_3包覆后未影响主体材料的晶体结构。LaF_3包覆后的材料倍率性能和循环性能均优于未包覆的原材料。在3.0~4.6 V电压范围和170 m A·g-1的电流密度下循环100周后,包覆量为1.0 wt%的材料容量保持率为84.6%,而未包覆的材料容量保持率仅为66.7%。包覆层的存在避免了电解液和主体材料的直接接触,减少了电解液的氧化和HF的腐蚀,稳定了材料的结构,极大的减小了电极极化程度,从而提高了材料的电化学性能。  相似文献   

19.
以废旧NiCoMn三元材料为原材料,采用溶胶-凝胶自蔓延燃烧法制备出优良的LiNi_(0.5)Co_(0.2)Mn_(0.3)O_2锂离子电池正极三元复合材料,用XRD、SEM和充放电测试等方法对材料的结构、形貌和电化学性能进行了表征,并研究了煅烧温度的影响。结果表明,制备的LiNi_(0.5)Co_(0.2)Mn_(0.3)O_2不仅具有较好的层状结构,还具有多孔的特性;在2.75~4.30 V测试条件下,900℃合成的样品的首次放电容量为169.4 m Ah/g,库伦效率约为88.6%,经过30次循环后,0.2 C倍率下的容量保持率为95.5%,具有最高的比容量和较好的循环性能。  相似文献   

20.
本文以燃烧法制备LiNi_(0.6)Co_(0.2)Mn_(0.2)O_2基体,通过机械球磨得到石墨烯修饰的正极材料。用扫描电镜(SEM)、X射线衍射(XRD)、电池测试和电化学工作站表征了材料的晶体结构和电化学性能。结果表明,石墨烯的修饰显著提高了Li Ni_(0.6)Co_(0.2)Mn_(0.2)O_2的容量和循环稳定性:经200℃热处理、1%石墨烯修饰后的样品在3.0~4.3 V、0.1C倍率下首次放电比容量达到170.8 mA·h·g~(-1),比基体材料提高了12 mA·h·g~(-1);1C下循环100周后容量保持率分别为91.1%,比基体提高了6.9%。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号