首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Salting-out-assisted liquid–liquid extraction (SALLE) was developed to extract thiacloprid (THI) from fruits and vegetables. SALLE conditions (NaCl/Na2SO4, pH, and solvent polarity) were investigated at various levels for the optimal recovery of THI. Meanwhile, reverse-phase high-performance liquid chromatographic (RP-HPLC) conditions were balanced over 1–100 µg/mL of THI. The optimized SALLE-RP-HPLC method offered 78.33–92.00% recovery of standard THI at an acceptable repeatability 1.81–4.30% and reproducibility 1.08–4.74%. The detection and quantification limits were found to be 0.03 and 0.05 µg/mL, respectively. The real-time analysis verifies its suitability and ease of use for the determination of THI in agricultural commodities.  相似文献   

2.
The present study aims to identify means of process intensification during liquid–liquid flow through a mini-channel. During liquid–liquid flow, depending on the flow conditions either the organic or the aqueous phase can be dispersed and with increase in flow velocity the dispersed phase can spontaneously invert to form the continuous phase or vice-versa. The present study aims to investigate the phenomena of phase inversion and its influence on mass transfer during toluene/acetic acid-water flow in a 1.98 mm glass mini-channel. It is observed that for organic phase as dispersed regime, higher mass transfer efficiency is achieved when the liquid–liquid mixture is in the phase inversion zone which marks the transition from organic to aqueous phase dispersion. The mixture velocities as well as the inlet concentration of diffusing species influence mass transfer characteristics in this zone. The results have indicated some interesting observations which can be exploited for process intensification in monolith and micro-reactor.  相似文献   

3.
A methodology, which determines the operating conditions simultaneously optimising the chemical yield and considering the safety aspect, has been developed for a chemical reaction which is carried out batch-wise. To illustrate the methodology, the aromatic nitration of toluene by mixed acid has been chosen as a typical exothermic and non-selective reaction. This reaction takes place in a two-phase medium and, therefore, involves simultaneously chemical reaction and mass transfer phenomena. A kinetic model recently proposed for the slow and fast liquid–liquid reaction regimes was integrated to the mass balance. Nitration experiments were carried out in order to compare experimental composition profiles with simulated ones. Afterwards, an optimisation procedure has been used to maximise conversion, by manipulating the operating conditions subject to safety constraints. The p-nitrotoluene yield was chosen as the criterion to be maximised. Experimental validation for the optimisation procedure has been carried out. A monofluid heating–cooling system controlled by a predictive controller was used for the temperature control of the reactor. Simulation and experimental results are presented, discussed and compared.  相似文献   

4.
It is known that a transient effluent outlet concentration is obtained with a batch of adsorbent solids in any operation. A preferred steady state outlet concentration can be achieved with a continuous flow of solids. In the present work, information on pressure profiles, the total pressure drop across the column and holdup of solids are experimentally obtained for various solid flow rates, particle sizes and densities in a countercurrent liquid–solid system. These experimental results are compared with the prediction obtained using a phenomenological model containing continuity and momentum balance equations. The dominant drag force term was expressed in terms of various drag equations. The drag expression developed by Foscolo et al. (1983 Foscolo, P. U., Gibilaro, L. G., and Waldram, S. P. (1983). A unified model for particulate expansion of fluidized beds and flow in fixed porous media, Chem. Eng. Sci., 38(8), 12511260.[Crossref], [Web of Science ®] [Google Scholar]) could predict the axial profiles of pressure drop and holdup, and the effect of various parameters on total pressure drop and solid holdup most satisfactorily.  相似文献   

5.
For the design and optimization of a tubular gas–liquid atomization mixer,the atomization and mixing characteristics of liquid jet breakup in the limited tube space is a key problem.In this study,the primary breakup process of liquid jet column was analyzed by high-speed camera,then the droplet size and velocity distribution of atomized droplets were measured by Phase-Doppler anemometry (PDA).The hydrodynamic characteristics of gas flow in tubular gas–liquid atomization mixer were analyzed by computational fluid dynamics (CFD) numerical simulation.The results indicate that the liquid flow rate has little effect on the atomization droplet size and atomization pressure drop,and the gas flow rate is the main influence parameter.Under all experimental gas flow conditions,the liquid jet column undergoes a primary breakup process,forming larger liquid blocks and droplets.When the gas flow rate (Q_g) is less than 127 m~3·h~(-1),the secondary breakup of large liquid blocks and droplets does not occur in venturi throat region.The Sauter mean diameter (SMD) of droplets measured at the outlet is more than 140μm,and the distribution is uneven.When Q_g127 m~3·h~(-1),the large liquid blocks and droplets have secondary breakup process at the throat region.The SMD of droplets measured at the outlet is less than 140μm,and the distribution is uniform.When 127Q_g162 m~3·h~(-1),the secondary breakup mode of droplets is bag breakup or pouch breakup.When 181Q_g216 m~3·h~(-1),the secondary breakup mode of droplets is shear breakup or catastrophic breakup.In order to ensure efficient atomization and mixing,the throat gas velocity of the tubular atomization mixer should be designed to be about 51 m·s~(-1)under the lowest operating flow rate.The pressure drop of the tubular atomization mixer increases linearly with the square of gas velocity,and the resistance coefficient is about 2.55 in single-phase flow condition and 2.73 in gas–liquid atomization condition.  相似文献   

6.
The droplet generation mechanism in the asymmetrically enhanced step T-junction remains unknown, especially for the transition stage from dripping to jetting regimes. In this work, the droplet generation mechanism was systematically investigated in a modified step T-junction by modulating a large flowrate range and altering different interfacial tensions. We found that under different fluid regimes, both the capillary number and flow rate ratio of continuous and dispersed phase showcase completely different impacts over droplet generation. In dripping regime, the interfacial tension, which was controlled by changing the surfactant concentration, dominated the formation mechanism when the surfactant concentration was found below micelle concentration. In jetting regime, our experimental results showed that the influence of the surfactant concentration on the size of generated droplets was rather negligible while the flow rate ratio of continuous and dispersed phase indeed determined such a parameter. In the dripping-jetting transition stage, an increase of droplet size was observed despite the increase of continuous phase flow. After reaching a peak, the droplet dimension started to decrease with the increase of continuous phase flow as expected. To the best for our knowledge, it is the first study to report generation mechanism in modified step T-junction from dripping to jetting regimes.  相似文献   

7.
Liquid–liquid dispersion and mass transfer were investigated in mechanically stirred vessels without baffles by changing operation factors such as an impeller rotation speed, off-bottom clearance, volumetric liquid ratio, etc. The dispersion regime was categorized into five groups: the sedimentary liquid was kept at the vessel bottom (I), partially elevated without any collision (II), partially dispersed by colliding with the impeller bottom (III), both liquids were partially dispersed by collisions with impeller blades (III’), and the sedimentary liquid was completely dispersed (IV). The dispersion switched to I → II → III → IV with the increasing rotation speed and decreasing off-bottom clearance. The liquid–liquid mass transfer rate was significantly enhanced with the collision of the sedimentary liquid with the impeller bottom, and subsequently increased with the increasing rotation speed, volumetric liquid ratio, and vessel diameter and with the decreasing off-bottom clearance. A multiple regression analysis method was applied to determine the mass transfer rates of III and III’.  相似文献   

8.
Liquid–liquid extraction process with the recommended low interfacial tension chemical system of butanol–succinic acid–water was performed in a two impinging-jets contacting device (TIJCD), working continuously with opposed impinging jets. A range of extraction efficiency of 58–96% was achieved under different conditions. Overall volumetric mass transfer coefficient and specific power input criteria clearly indicate the great performance capability of TIJCD. An increase in nozzle diameter and/or jets force results an efficiency enhancement, while increase in inter-nozzle distance leads the efficiency diminish. The overall volumetric mass transfer coefficient was satisfactorily correlated in the form of ordinary and dimensionless correlations.  相似文献   

9.
We present our new findings about the causes of discrepancies between the measured and calculated liquid-liquid interfacial tensions derived from contact angles. The calculated ones are based on either the equation developed by Fowkes or that by van Oss, Chaudhury and Good (VCG), while the measured ones are based on the sessile drop, weight-volume by Jańzuk et al. and the axisymmetric drop shape analysis (ADSA) by Kwok and Neumann. Indeed, there are deviations between the calculated and measured results. For an immiscible liquid-liquid or liquid-solid interface, we prefer to employ Harkins spreading model, which requires the interfacial tension to be constant. However, for the initially immiscible liquid-liquid pairs, we propose an adsorption model, and our model requires the interfacial tension to be varying and the surface tensions of bulk liquids at a distance from the interface to remain unchanged. Thus, the difference between the initial and final interfacial spreading coefficients (Si) equals the equilibrium interfacial film pressure (πi)e. According to our findings, the calculated interfacial tension represents the initial value (γ12)o, which differs from the equilibrium value (γ12)e obtained experimentally after some time delay. This expected gap at a reasonable time frame is chiefly caused by the equilibrium interfacial film pressure between the two liquids. The initial (or calculated) interfacial tension can be positive or negative, while the equilibrium (or measured) one can reach zero. In fact, the former is shown to have more predictive value than the latter. A negative initial interfacial tension is described to favor miscibility or spontaneous emulsification but it tends to revert to zero instantaneously. Thus, a miscible liquid mixture should have zero interfacial tension. In response to recent papers by Kwok et al., we show that the disagreements between the calculated and measured interfacial tensions are definitely not caused by the failure of the VCG approach. Correct interfacial tensions are calculated for liquid pairs containing formamide or dimethyl sulfoxide (DMSO) by using the dispersion components cited in Fowkes et al.'s later publication. With the corrected surface tension components, the equilibrium interfacial film pressures (πi)e's for at least 34 initially immiscible liquid pairs have been calculated. These values are generally lower than the corresponding spreading pressures πe's obtained by others using the Harkins model. Recently, we established a relationship between these two film pressures with the Laplace equation and found a new criterion for miscibility to be (πi)e = πe.  相似文献   

10.
An analysis of liquid film models for horizontal and near horizontal gas–liquid slug flows is developed. The models’ formulations employ the one dimensional separated phase momentum equations. The formulations differ among themselves, by neglecting some terms on the momentum balance and also on the closure relations. A comparative analysis discloses the differences amongst the formulations. The sensitivity of the liquid film models to the changes on the bubble velocity, liquid slug holdup and liquid viscosity is accessed through a series of parametric runs. Finally, the model is tested against experimental data taken for continuous horizontal slug flow. The tests were designed to check if the models are able to capture the stochastic film properties provided the properly closure relations.  相似文献   

11.
The presence of thin aqueous films and their stability has a profound effect on reservoir rock–fluids interactions involved in spreading and adhesion. The stability of thin wetting aqueous films on rock surfaces is governed by several variables including pH, brine and crude oil compositions, and capillary pressure. These variables govern the wetting states in the solid–liquid–liquid systems. The wetting states influence the residual oil saturation and the oil-water relative permeabilities and, consequently, the oil recovery. The objective of this study was to deduce a functional dependence of thin-film stability on the above parameters by considering intermolecular and surface interactions in rock–crude oil–brine systems. The surface forces are manifested as disjoining pressure in thin films. The disjoining pressure isotherms for the selected solid–liquid–liquid systems have been computed in terms of the bulk properties of the media. The equilibrium contact angles have also been computed from the integration of the Young–Laplace equation, which relates contact angle to the capillary pressure and disjoining pressure isotherm of the system. The contact-angle data obtained from sessile-drop experiments have been compared with the calculated results, as well as with other published results. Adhesion maps, which relate the film stability to brine pH and molarity, have been developed. The rock–fluids systems considered for this study consisted of smooth glass, quartz and Yates reservoir fluids. The DLVO theory has been used to model the intermolecular forces. The structural forces are incorporated to overcome the limitations of the DLVO theory. A charge regulation model has been used to analyze the crude oil–brine and glass–brine interfaces. The effects of multivalent ions have been incorporated using an equivalent molarity concept. The overall computational model developed in this study is aimed at providing a priori prediction capability of rock-fluids interactions in petroleum reservoirs for inclusion in reservoir simulators.  相似文献   

12.
A new dispersive liquid–liquid microextraction (DLLME) method is proposed for rapid separation, simultaneous extraction and preconcentration of gold and palladium at ultra trace amounts. The extraction of the analytes was performed in the presence of 5-[(E)-(2,6-diaminopyridine-3-yl)diazenyl]-1,3,4-thiadiazole-2-thiol (DAT) as chelating agent. Chloroform and acetone were used as extraction and dispersive solvents, respectively. The variables affecting the complexation and extraction conditions were optimized. The calibration curves were linear in the range of 1.1–85 and 0.9–124 μg L−1 with the detection limits of 0.4 and 0.6 μg L−1, and with the enrichment factors of 94 and 113 for Au and Pd, respectively. The precision (RSD%) was better than 2.4%. The accuracy of the method was verified by analysing the certified standard reference material (CDN–PGMS-10). The results show that the dispersive liquid–liquid microextraction pretreatment is a sensitive, rapid, simple and safe method for the separation/preconcentration of gold and palladium.  相似文献   

13.
A new aeration-assisted homogeneous liquid–liquid microextraction using high-density solvent for determination of copper, nickel and cobalt, as a prior step to their determination, coupled to flame atomic absorption spectrometry is presented. Under the optimum conditions, the calibration graphs were linear in the range of 5.0–600.0 ng/mL for copper, 10.0–450.0 ng/mL for nickel and 8.0–500.0 ng/mL for cobalt. The limits of detection were 1.3, 3.6 and 2.7 ng/mL and the enrichment factor estimated to be 350, 340 and 360, for copper, nickel and cobalt, respectively. The proposed method was successfully applied for the determination of these cations in different samples.  相似文献   

14.
Axial and radial profiles of gas and solids holdups have been studied in agas-liquid-solid circulating fluidized bed at 140mm i.d..Experimental results indicate that the axialand radial profiles of gas and solids holdups are more uniform than those in a conventionalfluidized bed.Axial and radial liquid dispersion coefficients in the gas-liquid-solid circulating fluidizedbed are investigated for the first time.It is found that axial and radial liquid dispersioncoefficients increases with increaes in gas velocity and solids holdup.The liquid velocity has littleinfluence on the axial liquid dispersion coefficient,but would adversely affect the redial liquiddispersion coefficient.It can be concluded that the gas-liquid-solid circulating fluidized bed hasadvantages such as better interphase contact and lower liquid dispersion along the axial directionover the expanded bed.  相似文献   

15.
A packed bed reactor with orifice plates (PBR@OP) was designed by adding orifice plates periodically in packed beds. Hydrodynamics and droplet size distribution in PBR@OP were experimentally investigated using fatty acid methyl esters (FAME)/water as the model liquid–liquid system. In PBR@OP, the flow pattern was close to plug flow. Droplets with Sauter mean diameter (d32) of 150–550 μm were generated. The pressure drop of orifice, flow velocity and plate spacing were key parameters to control the droplet size. The reactor performance was evaluated by analyzing a FAME epoxidation process. At the same d32 and residence time, the length and total pressure drop of PBR@OP were about 1/3 and 1/4 of those of PBR without orifice plates, respectively. Furthermore, a semi-empirical correlation describing the d32 change in PBR@OP was developed, revealing a relative mean deviation of 8.64%. PBR@OP presents a cost-effective option for the intensification of liquid–liquid medium rate reactions.  相似文献   

16.
1,3-Propanediol,traditionally obtained from fossils,has numerous industrial applications,including use in the production of high performance polymers.The microbial production of 1,3-propanediol presents several opportunities,and the final purity grade determines its price and commercial viability.The development of novel separation technology could improve the economic viability of the bioproduction of 1,3-propanediol.Thus,we investigated salting-out extraction as a novel process for 1,3-propanediol recovery from fermentation broth.Initially,a screening for the best salt/solvent combination was conducted and then optimized using the response surface methodology.The solvents studied were methanol,ethanol,isopropanol and acetone,and the salts examined were K_2HPO_4,Na_2CO_3,K_2CO_3,(NH_4)_2SO_4,NaHPO_4,K_3PO_4 and C_6H_5NaO_7.The optimal extraction system consisted of 34 wt%K_3PO_4,28 wt% ethanol,and 38 wt% fermentation broth containing 23.0 g·L~(-1)1,3-propanediol,which gave the highest partition coefficient of 33 and recovery yield of 97%.The results demonstrated that salting-out extraction was a promising method for 1,3-propanediol recovery from fermentation broth.  相似文献   

17.
The effect of scale, processing conditions, interfacial tension and viscosity of the dispersed phase on power draw and drop size distributions in three in-line Silverson rotor–stator mixers was investigated with the aim to determine the most appropriate scaling up parameter. The largest mixer was a factory scale device, whilst the smallest was a laboratory scale mixer. All the mixers were geometrically similar and were fitted with double rotors and standard double emulsor stators. 1 wt.% silicone oils with viscosities of 9.4 mPa s and 339 mPa s in aqueous solutions of surfactant or ethanol were emulsified in single and multiple pass modes. The effect of rotor speed, flow rate, dispersed phase viscosity, interfacial tension and scale on drop size distributions was investigated.  相似文献   

18.
19.
Abstract

Changes in rheological properties, morphology, and oil resistance in NR–NBR blends by viscosity ratio have been investigated. In this study, the viscosity ratio was modified by mechanical mastication and addition of liquid natural rubber (LNR) and epoxidised liquid natural rubber (ELNR). The results reveal that as viscosity ratio increased from 0·5 to 1·0, Mooney viscosity of the blends increased, and then decreased sharply as the viscosity ratio further increased from 1·0 to 2·0. The addition of LNR and ELNR for plasticising NR and NBR, respectively, does not significantly affect cure properties of the blends. The phase size of the NR dispersed phase depends strongly on the viscosity ratio. The high viscosity of the matrix and/or the low viscosity of the dispersed phase promote breaking up of the dispersed phase. Unexpectedly, a decrease in size of the dispersed phase by the modification of viscosity ratio via the use of low molecular weight rubber (i.e. LNR and ELNR) did not result in an improvement in oil resistance.  相似文献   

20.
合成了一种无色、透明、均一的氯化胆碱-尿素-氯化镁类离子液体。采用傅里叶红外光谱仪初步解析了类离子液体的结构。利用电导率仪、旋转式黏度计和密度计等仪器分别测定了该类离子液体的电导率、黏度和密度,并得出了其随温度和组成的变化关系。根据物理化学性质与温度的关系计算了Gibbs自由能、焓变和熵变等热力学数据。同时测定了类离子液体的循环伏安曲线并分析了其电化学行为。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号