首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 118 毫秒
1.
用溶胶凝胶法制备了一系列的La2NiO4型氧化物催化剂,考察了其同时催化还原脱除NOx和碳烟颗粒的性能,结果表明未改性的La2NiO4具有较好的催化活性,300℃时NO的转化率可达42%,选择性为54%,氧气对于目标反应具有一定的促进作用。为了考察A、B位掺杂改性对其催化性能的影响,分别对A位进行了Sr、Ba掺杂,B位进行了Mn、Fe掺杂,研究表明A、B掺杂改性会起到不同的作用,A位改性主要影响反应的选择性,B位改性主要影响反应的温度。A位Sr改性可以提高催化剂的催化活性和选择性,300℃时NO的转化率从42%提高到64%,选择性从54%提高到69%。  相似文献   

2.
采用柠檬酸-EDTA络合法制备了纳米钙钛矿催化剂La_(0.9)Sr_(0.1)Co_(1-x)FexO_3,催化剂具有较好的同时去除NO和碳烟(soot)催化活性,其中La_(0.9)Sr_(0.1)Co_(0.7)Fe_(0.3)O_3展现出最佳的催化活性,其在380.0℃时NO转化率为32.5%,soot最大燃烧速率温度(T_m)为368.5℃。H_2-程序升温还原(H_2-TPR)和NO-程序升温脱附(NO-TPD)结果表明,Fe掺杂能显著提高催化剂低温还原性能、表面氧物种活性及NO吸附性能,这有利于其改善催化活性。X射线光电子能谱(XPS)结果表明,Fe掺杂能增加催化剂表面吸附氧浓度和高价离子(Co~(4+)),这对提高催化氧化能力至关重要。采用颗粒物捕集器(DPF)作为载体涂覆CeO_2涂层用于负载La_(0.9)Sr_(0.1)Co_(0.7)Fe_(0.3)O_3催化剂进行柴油机台架实验,结果表明该催化剂具有较好的同时去除NO_x和soot催化活性,最大NO转化率为23.0%,T_m为341.0℃,表明Fe掺杂对提高催化活性至关重要。  相似文献   

3.
采用浸渍法制备了不同Cu/Mn/Ce摩尔比的铜锰铈三元复合氧化物催化剂。通过XRD、和H_2-TPR对催化剂的晶相结构和晶格氧的移动性进行了表征和分析,采用常压气-固反应装置考察了不同的铜锰铈摩尔比对催化氧化甲苯性能的影响,并讨论了催化剂晶相组成、氧移动性与催化活性的关系。结果显示,铜锰氧化物复合形成的新相Cu1.4Mn1.6O4是具有更高催化活性的中心,Ce O_2的加入提高了Cu_(1.4)Mn_(1.6)O_4分散度,从而增强了催化剂的氧移动性,提高了催化剂的活性和氧化能力。当Cu/Mn/Ce摩尔比为1:1:4时,催化氧化甲苯的活性最佳,T95%为282.6℃,CO_2选择性为100%。  相似文献   

4.
Cu-Zr-Ce-O复合氧化物催化剂上CO选择性氧化性能   总被引:6,自引:0,他引:6       下载免费PDF全文
邹汉波  董新法  林维明 《化工学报》2005,56(12):2320-2325
将共沉淀法制备的Cu-Zr-Ce-O复合氧化物催化剂应用于富氢气体中CO的选择性氧化反应,研究了ZrO2掺杂量及预处理方法对催化剂性能的影响,并通过H2-TPR、CO-TPR等手段对催化剂进行了表征.结果表明,掺杂ZrO2的Cu1Zr1Ce9Oδ催化剂在160~200℃之间具有99%以上的CO转化率和相对较高的选择性.掺杂适量的ZrO2能够提高催化剂的热稳定性和储氧能力,促进催化剂表面吸附氧向晶格氧的转化.经氧气预处理的Cu1Zr1Ce9Oδ催化剂活性最高.催化剂上Cu+/Cu2+氧化还原离子对和表面的晶格氧含量均影响催化剂的活性,但在富氢气氛下,表面的晶格氧对催化剂的性能影响较大.  相似文献   

5.
采用熔融法制备了掺杂Mn的Cu/Zn/Al_2O_3催化剂,用于CO_2加氢合成甲醇。考察了元素组成对催化剂结构和性能的影响。通过扫描电子显微镜(SEM)、X射线能谱仪(1EDS)、X射线衍射仪(XRD)、比表面积分析仪(BET)等对制备的催化剂进行了表征。结果表明:熔融法制备的催化剂为合金固溶体(ss),合金化程度较高;随着Mn含量的增加,Cu在合金中的分布更加分散;晶格常数随着Mn含量的增加而增大;当Cu占合金总质量的40%时,催化剂的晶格常数最大,甲醇选择性最高,约为35.8%。催化剂合金化后,甲醇的选择性明显提高,这可能归因于合金催化剂表面的缺陷较多。合金通常具有优良的耐腐蚀和耐高温性能,其在CO_2加氢合成低碳醇方面具有潜在的应用价值。  相似文献   

6.
碳烟是导致雾霾天气的罪魁祸首,选用适宜的催化剂提高碳烟颗粒的催化活性,可有效消除其对人体和环境的危害。采用溶胶凝胶法在Mn_2O_3(三氧化二锰)中掺杂不同含量的碱金属Rb(铷),合成了类似水钠锰矿和锰钾矿结构的催化剂,并着重探讨了该催化剂的组成和结构对碳烟颗粒燃烧性能的影响。研究结果表明:Rb_(0.6)Mn的催化效果相对最佳,可使碳烟的T_m(碳烟转化率为50%时的温度)达到333℃;Rb_xMn催化剂表面覆盖的碱金属,使得催化剂与碳烟颗粒的表面接触性能因碱金属熔融盐之特性而降低;碱金属与Mn形成的特殊结构(即Rb离子在掺杂过程中会部分富集在催化剂表面),使Mn价态升高,表面氧物种缺陷位增多,从而提高了氧的流动性,进而促进了碳烟的催化燃烧。  相似文献   

7.
在Ni/CeO2中掺杂Fe2O3、La2O3和MnO2,并用XRD、TPR、TPD等对掺杂的催化剂的晶相结构、表面性能等进行了表征。结果表明,掺杂Fe2O3有利于比表面积增大、CeO2粒度减小和晶格氧的形成,增强催化剂的乙醇吸附能力和氧化能力,提高催化剂的活性与抗积碳性。Ni/Fe2O3-CeO2催化剂在500℃时,乙醇转化率高达82.4%,氢气选择性69.3%。  相似文献   

8.
采用等体积浸渍法制备了PtMn/C催化剂,常压下用四氯化碳加氢脱氯制氯仿的反应评价了催化剂的性能,考察了反应条件和助剂Mn负载量对催化剂上四氯化碳转化率和氯仿选择性的影响,结果表明添加Mn能够明显降低催化剂的活性,但却能够有效提高催化剂对氯仿的选择性,适当的催化剂还原温度有利于催化剂稳定性的提高,反应温度对催化剂的活性有较大的影响,适当提高空速和氢气流量有利于氯仿选择性的提高,但四氯化碳的转化率有所降低。反应温度100℃,四氯化碳空速0.6 h-1,氢气与四氯化碳物质的量比为8∶1,催化剂活化温度为300℃的条件下四氯化碳的转化率为100%,氯仿的选择性大于90%,催化剂上Pt和Mn的质量分数分别为1%和0.5%。  相似文献   

9.
在Ni/CeO2中掺杂Fe2O3、La2O3和MnO2,并用XRD、TPR、TPD等对掺杂的催化剂的晶相结构、表面性能等进行了表征。结果表明,掺杂Fe2O3有利于比表面积增大、CeO2粒度减小和晶格氧的形成,增强催化剂的乙醇吸附能力和氧化能力,提高催化剂的活性与抗积碳性。Ni/Fe2O3-CeO2催化剂在500℃时,乙醇转化率高达82.4%,氢气选择性69.3%。  相似文献   

10.
最近的研究表明,非贵金属的掺杂不仅可以通过改善贵金属Pd催化剂的织构、结构、氧化还原等性能来提高其HC-SCR的催化活性、选择性、稳定性,同时还可以降低贵金属用量从而降低催化剂成本,为其商业化应用做出贡献。基于提高Pd催化活性及降低其用量的目的,通过添加廉价的造孔剂对商业化Al_2O_3进行改性,制备出孔隙率高的Al_2O_3基底,然后通过浸渍法成功制备出Mo改性的Pd/Al_2O_3催化剂,并通过XRD,BET,NH_3-TPD,H_2-TPR,XPS对催化剂进行表征,系统研究了Mo掺杂对Pd催化剂的HC-SCR催化性能的影响,研究表明适当的Mo掺杂可以提高催化剂的催化活性,且当Mo掺杂为5%的时候催化效果最佳。  相似文献   

11.
Supported base metal catalysts were tested for the preferential oxidation of CO (CO PROX). The catalysts we investigated covered a wide range of transition metals (Co, Cr, Cu, Ni, Zn) supported on oxides with very different acidic, basic and redox properties (MgO, La2O3, SiO2–Al2O3, CeO2, Ce0.63Zr0.37O2). The influence of the metal loading (Cu), the support properties (acidity, basicity, redox, surface area) and the reaction conditions (reaction temperature, feed composition) on the catalyst activity and selectivity was evaluated. The activity of ceria and ceria–zirconia supported copper catalysts was comparable to the performances of noble metal samples classically used for the PROX reaction. In addition, Cu–CeO2 catalysts showed a practically constant and high selectivity towards CO oxidation in the temperature range of 50–150 °C. Due to the strong synergetic effect between copper and ceria, only a small amount of copper (0.3 wt.%) was necessary to get an active catalyst. The best catalytic performances were obtained for the samples containing 1–3 wt.% copper. The presence of small copper particles in close interaction with the ceria support was shown to be responsible for the enhanced activity. Except for the hydrogen oxidation, no parallel reactions (CO or CO2 methanation reactions, coking, RWGS) could be detected over these catalysts. Classically, an increase of the oxygen excess led to an increased CO conversion with a simultaneous loss of selectivity towards CO2. Finally, the presence of CO2 in the feed negatively affected the catalytic activity. This effect was attributed to the adsorption of CO2 on the copper sites, probably as CO.  相似文献   

12.
The catalytic activity of Pt on alumina catalysts, with and without MnOx incorporated to the catalyst formulation, for CO oxidation in H2-free as well as in H2-rich stream (PROX) has been studied in the temperature range of 25–250 °C. The effect of catalyst preparation (by successive impregnation or by co-impregnation of Mn and Pt) and Mn content in the catalyst performance has been studied. A low Mn content (2 wt.%) has been found not to improve the catalyst activity compared to the base catalyst. However, catalysts prepared by successive impregnation with 8 and 15 wt.% Mn have shown a lower operation temperature for maximum CO conversion than the base catalyst with an enhanced catalyst activity at low temperatures with respect to Pt/Al2O3. A maximum CO conversion of 89.8%, with selectivity of 44.9% and CO yield of 40.3% could be reached over a catalyst with 15 wt.% Mn operating at 139 °C and λ = 2. The effect of the presence of 5 vol.% CO2 and 5 vol.% H2O in the feedstream on catalysts performance has also been studied and discussed. The presence of CO2 in the feedstream enhances the catalytic performance of all the studied catalysts at high temperature, whereas the presence of steam inhibits catalysts with higher MnOx content.  相似文献   

13.
张嘉琪  林丽娜  高文桂  祝星 《化工进展》2022,41(8):4213-4223
采用水热法制备CeO2纳米颗粒(W-CeO2)、CeO2纳米片(S-CeO2)、CeO2纳米棒(B-CeO2)及CeO2纳米八面体(O-CeO2),用浸渍法负载相同质量分数的铜形成CuO/CeO2催化剂。通过扫描电镜(SEM)、高分辨透射电子显微镜(TEM)、X射线衍射(XRD)、拉曼光谱(Raman)、自动吸附分析仪(BET)、H2程序升温还原(H2-TPR)、N2O滴定等表征技术对催化剂进行表征,并在可控温控压的固定床石英管反应器中对催化剂的催化性能进行评价。研究了不同形貌CuO/CeO2催化剂对CO2加氢制备甲醇的影响;结果表明,CuO/CeO2催化剂的催化活性存在明显的形貌依赖性,催化剂的暴露晶面、比表面积、表面碱性位点、表面氧缺陷的差异均会对CO2转化率、甲醇选择性和产率产生影响。其中,不同形貌CeO2优先暴露晶面的活性顺序为S-CeO2({100}+{110})>W-CeO2{100}>B-CeO2{111}≈O-CeO2{111},暴露晶面活性越高,催化剂表面氧缺陷越多,CuO-CeO2间相互作用越强,则催化活性越好。当为CuO/S-CeO2时,催化剂表面中碱性位点最多,催化剂比表面积为88.8m2/g,铜分散度为19.2%,CO2转化率为6.56%,甲醇选择性和收率为96.3%和0.063g/(gcat·h),催化活性最好,由活性评价试验得转化率由高到低依次为S-CeO2>B-CeO2>W-CeO2>O-CeO2,可知CeO2形貌差异会决定CuO/CeO2催化剂的物化性能和催化活性,从而提升对不同形貌CuO/CeO2催化剂催化CO2加氢制甲醇的基础认识。  相似文献   

14.
MnOx and Sm–Mn catalysts were prepared with the coprecipitation method, and they showed excellent activities and sulfur resistances for the selective catalytic reduction of NOx by NH3 between 50 and 300 °C in the presence of excess oxygen. 0.10Sm–Mn catalyst indicated better catalytic activity and sulfur resistance. Additionally, the Sm doping led to multi-aspect impacts on the phases, morphology structures, gas adsorption, reactions process, and specific surface areas. Therefore, it significantly enhances the NO conversion, N2 selectivity, and sulfur resistance. Based on various experimental characterization results, the reaction mechanism of catalysts and the effect of SO2 on the reaction process about the catalysts were extensively explored. For 0.10Sm–Mn catalyst, manganese sulfate and sulfur ammonium cannot be generated broadly under the influence of SO2 and the amount of surface adsorbed oxygen. The Bronsted acid sites strengthen significantly due to the addition of SO2, enhancing the sulfur resistance of the 0.10Sm–Mn catalyst.  相似文献   

15.
The direct synthesis of olefins by CO2 hydrogenation with iron-based catalysts is one of the best ways to achieve CO2 emission reduction and CO2 conversion and utilization. At present, the CO2 hydrogenation activity and structural strength of the iron-based catalysts are still relatively low during CO2 hydrogenation process, which has become an important challenge for the industrialization of CO2 hydrogenation to olefins. In this work, a series of the supported iron-based catalyst was prepared by the impregnation method to study the influence of the properties of support materials on the structure of iron-based catalysts and the reactivities of the direct synthesis of olefins from CO2 hydrogenation. This work found that the support induced the iron species formed during the process of CO2 hydrogenation, simultaneously affected the order degree of carbon species on the surface of iron-based catalyst, and tuned the capability of CO2 adsorption and the activities of CO2 activation. The results shown that the Fe-based catalyst supported on ZrO2 exhibited the best catalytic performance for CO2 hydrogenation to olefins at 320℃ and 2.0 MPa. The CO2 conversion (>30%) and the selectivity of olefins in C2—C7 hydrocarbon products were as high as over 85%, the ratio of olefins to paraffins was 8.2, and the CO selectivity was 17.1%.  相似文献   

16.
Low temperature catalysts are attracting increasing attention in the selective catalytic reduction (SCR) of NO with NH3. MnOx-decorated MgAl layered double oxide (Mn/MgAl-LDO) was synthesized via a facile fast pour assisted co-precipitation (FP-CP) process. Compared to the Mn/MgAl-LDO obtained via slow drop assisted coprecipitation (SD-CP) method, the Mn/MgAl-LDO (FP-CP) has excellent activity. The Mn/MgAl-LDO (FP-CP) catalyst was shown to possess a high NO conversion rate of 76%-100% from 25 to 150 ℃, which is much better than the control Mn/MgAl-LDO (SD-CP) (29.4%-75.8%). In addition, the Mn/MgAl-LDO (FP-CP) offered an enhanced NO conversion rate of 97% and a N2 selectivity of 97.3% at 100 ℃; the NO conversion rate was 100% and the N2 selectivity was 90% at 150 ℃ with a GHSV of 60,000 h-1. The Mn/MgAl-LDO (FP-CP) catalyst exhibited a smaller fragment nano-sheet structure (sheet thickness of 7.23 nm). An apparent lattice disorder was observed in the HRTEM image confirming the presence of many defects. The H2-TPR curves show that the Mn/MgAl-LDO (FPCP) catalyst has abundant reducing substances. Furthermore, the enhanced surface acidity makes the NH3 concentration of the Mn/MgAl-LDO (FP-CP) catalyst lower than 100 ml·m-3 after the reaction from 25 to 400 ℃. This can effectively reduce the ammonia escape rate in the SCR reaction. Thus, the Mn/MgAl-LDO (FP-CP) catalyst has potential applications in stationary industrial installations for environmentally friendly ultra-low temperature SCR.  相似文献   

17.
铁基催化剂CO2加氢直接合成烯烃是实现CO2减排及CO2转化与利用的最佳途径之一。目前铁基催化剂的CO2加氢活性及反应过程中铁基催化剂结构强度仍然较低,成为CO2加氢制烯烃产业化生产的重要挑战。通过浸渍法制备一系列负载型铁基催化剂,研究载体材料性质对铁基催化剂结构及CO2加氢直接合成烯烃的影响特性。研究发现,载体可诱导铁基催化剂在CO2加氢反应过程中形成的铁物种,同时影响铁基催化剂表面碳物种的有序度,调变对CO2吸附及活化能力;研究结果表明ZrO2负载的Fe催化剂展现出最佳的CO2加氢合成烯烃催化性能,在温度320℃和反应压力2.0 MPa时,CO2转化率>30%,C2~C7烃类产物中烯烃选择性高达85%以上,烯烷比为8.2,且CO选择性较低为17.1%。  相似文献   

18.
戴文华  辛忠 《化工学报》2022,73(8):3586-3596
为了提高Cu/ZrO2催化剂在二氧化碳加氢制甲醇中的催化活性,制备了一系列不同Si/Zr的Si-ZrO2载体并负载5%(质量分数)Cu得到了Cu/Si-ZrO2催化剂。对所制备的催化剂进行了X射线衍射(XRD)、N2物理吸脱附(BET)、X射线光电子能谱(XPS)、氢气程序升温还原(H2-TPR)、二氧化碳程序升温脱附(CO2-TPD)及高分辨透射电子显微镜 (HRTEM) 的表征。结果表明,Si的掺杂使得Cu/ZrO2体系获得了稳定的晶相,大的比表面积和更多的碱性位点,尤其是中强碱性位点,同时产生了更多的氧空位,促进了CO2的吸附和转化,因此得到了更高活性的催化剂。当Si与Zr的摩尔比为0.2时,在质量空速为6000 ml·g-1·h-1,温度为220℃、压力为3.0 MPa,V(H2)∶V(CO2)=3∶1(体积比)条件下,催化剂的CO2转化率为4.6%,CH3OH选择性为85%。  相似文献   

19.
戴文华  辛忠 《化工学报》1951,73(8):3586-3596
为了提高Cu/ZrO2催化剂在二氧化碳加氢制甲醇中的催化活性,制备了一系列不同Si/Zr的Si-ZrO2载体并负载5%(质量分数)Cu得到了Cu/Si-ZrO2催化剂。对所制备的催化剂进行了X射线衍射(XRD)、N2物理吸脱附(BET)、X射线光电子能谱(XPS)、氢气程序升温还原(H2-TPR)、二氧化碳程序升温脱附(CO2-TPD)及高分辨透射电子显微镜 (HRTEM) 的表征。结果表明,Si的掺杂使得Cu/ZrO2体系获得了稳定的晶相,大的比表面积和更多的碱性位点,尤其是中强碱性位点,同时产生了更多的氧空位,促进了CO2的吸附和转化,因此得到了更高活性的催化剂。当Si与Zr的摩尔比为0.2时,在质量空速为6000 ml·g-1·h-1,温度为220℃、压力为3.0 MPa,V(H2)∶V(CO2)=3∶1(体积比)条件下,催化剂的CO2转化率为4.6%,CH3OH选择性为85%。  相似文献   

20.
The conversion of CO2 electrocatalytic hydrogenation into energy-rich fuel is considered to be the most effective way to carbon recycle. Nitrogen-doping carbonized ZIF-8 is proposed as carrier of the earth-rich Sn catalyst to overcome the limit of electron transfer and CO2 adsorption capacity of Sn. Hierarchically porous structure of Sn doped carbonized ZIF-8 is controlled by hydrothermal and carbonization conditions, which induces much higher specific surface area than that of the commercial Sn nanoparticle (1003.174 vs. 7.410 m2·g-1). The shift of nitrogen peaks in X-ray Photoelectron Spectroscopy spectra indicates interaction between ZIF-8 and Sn, which induces the shift of electron cloud from Sn to the chemical nitrogen to enhance conductivity and regulate electron transfer from catalyst to CO2. Lower mass transfer resistance and Warburg resistance are investigated through EIS, which significantly improves the catalytic activity for CO2 reduction reaction (CO2RR). Onset potential of the reaction is reduced from -0.74 V to less than -0.54 V vs. RHE. The total Faraday efficiency of HCOOH and CO reaches 68.9% at -1.14 V vs. RHE, which is much higher than that of the commercial Sn (45.0%) and some other Sn-based catalyst reported in the literature.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号