首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Carbapenem-resistant Enterobacteriaceae (CRE) are emerging pathogens that cause variety of severe infections. CRE evade antibiotic treatments because these bacteria produce enzymes that degrade a wide range of antibiotics including carbapenems and β-lactams. The formation of biofilms aggravates CRE infections, especially in a wound environment. These difficulties lead to persistent infection and non-healing wounds. This creates the need for new compounds to overcome CRE antimicrobial resistance and disrupt biofilms. Recent studies in our lab show that 600 Da branched polyethyleneimine (BPEI) and its derivative PEG350-BPEI can overcome antimicrobial resistance and eradicate biofilms in methicillin-resistant S. aureus, methicillin-resistant S. epidermidis, P. aeruginosa, and E. coli. In this study, the ability of 600 Da BPEI and PEG350-BPEI to eradicate carbapenem-resistant Enterobacteriaceae bacteria and their biofilms is demonstrated. We show that both BPEI and PEG350-BPEI have anti-biofilm efficacy against CRE strains expressing Klebsiella pneumoniae carbapenemases (KPCs) and metallo-β-lactamases (MBLs), such as New Delhi MBL (NDM-1). Furthermore, our results illustrate that BPEI affects planktonic CRE bacteria by increasing bacterial length and width from the inability to proceed with normal cell division processes. These data demonstrate the multi-functional properties of 600 Da BPEI and PEG350-BPEI to reduce biofilm formation and mitigate virulence in carbapenem-resistant Enterobacteriaceae.  相似文献   

2.
The Gram-positive bacteria, methicillin-resistant Staphylococcus aureus (MRSA) and Gram-negative bacteria, Acinetobacter baumannii, are pathogens responsible for millions of nosocomial infections worldwide. Due to the threat of bacteria evolving resistance to antibiotics, scientists are constantly looking for new classes of compounds to treat infectious diseases. The biphenolic analogs of honokiol that were most potent against oral bacteria had similar bioactivity against MRSA. However, all the compounds proved ineffective against A. baumannii. The inability to inhibit A. baumannii is due to the difficult-to-penetrate lipopolysaccharide-coated outer membrane that makes it challenging for antibiotics to enter Gram-negative bacteria. The C 2 scaffold was optimized from the inhibition of Gram-positive bacteria to broad-spectrum antibacterial compounds that inhibit the dangerous Gram-negative pathogen A. baumannii.  相似文献   

3.
In the search for an effective strategy to overcome antimicrobial resistance, a series of new morpholine-containing 5-arylideneimidazolones differing within either the amine moiety or at position five of imidazolones was explored as potential antibiotic adjuvants against Gram-positive and Gram-negative bacteria. Compounds (7–23) were tested for oxacillin adjuvant properties in the Methicillin-susceptible S. aureus (MSSA) strain ATCC 25923 and Methicillin-resistant S. aureus MRSA 19449. Compounds 14–16 were tested additionally in combination with various antibiotics. Molecular modelling was performed to assess potential mechanism of action. Microdilution and real-time efflux (RTE) assays were carried out in strains of K. aerogenes to determine the potential of compounds 7–23 to block the multidrug efflux pump AcrAB-TolC. Drug-like properties were determined experimentally. Two compounds (10, 15) containing non-condensed aromatic rings, significantly reduced oxacillin MICs in MRSA 19449, while 15 additionally enhanced the effectiveness of ampicillin. Results of molecular modelling confirmed the interaction with the allosteric site of PBP2a as a probable MDR-reversing mechanism. In RTE, the compounds inhibited AcrAB-TolC even to 90% (19). The 4-phenylbenzylidene derivative (15) demonstrated significant MDR-reversal “dual action” for β-lactam antibiotics in MRSA and inhibited AcrAB-TolC in K. aerogenes. 15 displayed also satisfied solubility and safety towards CYP3A4 in vitro.  相似文献   

4.
Ramoplanins and enduracidins are peptidoglycan lipid intermediate II-binding lipodepsipeptides with broad-spectrum activity against methicillin- and vancomycin-resistant Gram-positive pathogens. Targeted genome mining using probes from conserved sequences within the ramoplanin/enduracidin biosynthetic gene clusters (BGCs) was used to identify six microorganisms with BGCs predicted to produce unique lipodepsipeptide congeners of ramoplanin and enduracidin. Fermentation of Micromonospora chersina yielded a novel lipoglycodepsipeptide, called chersinamycin, which exhibited good antibiotic activity against Gram-positive bacteria (1–2 μg/mL) similar to the ramoplanins and enduracidins. The covalent structure of chersinamycin was determined by NMR spectroscopy and tandem mass spectrometry in conjunction with chemical degradation studies. These six new BGCs and isolation of a new antimicrobial peptide provide much-needed tools to investigate the fundamental aspects of lipodepsipeptide biosynthesis and to facilitate efforts to produce novel antibiotics capable of combating antibiotic-resistant infections.  相似文献   

5.
Penicillin-binding proteins (PBPs) are a family of bacterial enzymes that are key components of cell-wall biosynthesis and the target of β-lactam antibiotics. Most microbial pathogens contain multiple structurally homologous PBP isoforms, making it difficult to target individual PBPs. To study the roles and regulation of specific PBP isoforms, a panel of bioorthogonal β-lactone probes was synthesized and compared. Fluorescent labeling confirmed selectivity, and PBPs were selectively enriched from Streptococcus pneumoniae lysates. Comparisons between fluorescent labeling of probes revealed that the accessibility of bioorthogonal reporter molecules to the bound probe in the native protein environment exerts a more significant effect on labeling intensity than the bioorthogonal reaction used, observations that are likely applicable beyond this class of probes or proteins. Selective, bioorthogonal activity-based probes for PBPs will facilitate the activity-based determination of the roles and regulation of specific PBP isoforms, a key gap in knowledge that has yet to be filled.  相似文献   

6.
The development of antibiotic resistance in pathogenic bacteria like Staphylococcus aureus calls for novel approaches to cope with the limited availability of effective antibacterial options. This work aims to develop a site-specific drug-delivery multifunctional vehicle with the ability to clear resistant bacteria while promoting the healing of the surrounding damaged tissue. The use of silver-doped microparticles (Ag–BG) is proposed as a platform to deliver vancomycin against MRSA, which under growth-arrested conditions exhibits resistance to vancomycin. Ag–BG caged vancomycin within the Ca–P deposits resulted from the ion exchange between surface and medium, with a loading efficiency higher than 50% after 6 h of uptake. The drug was always released above the minimum inhibitory concentration against MRSA. The Ag–BG@vanc conjugate presented strong antibacterial properties against metabolically impaired bacteria, which can tolerate high concentrations of vancomycin. Ag–BG@vanc was more lethal for MRSA than Ag–BG alone, due to its capability to synergize with antibiotics. The presence of Ca–P deposits and antibiotics at the Ag–BG surface did not compromise its biological properties since the Ag–BG@vanc conjugate still promoted the cell proliferation of human pre-osteoblast cells. These properties of multifunctional Ag–BG@vanc can provide new hope to fight antibiotic resistance and simultaneously promote bone regeneration holding great potential.  相似文献   

7.
Methicillin-resistant Staphylococcus aureus (MRSA) tolerates β-lactam antibiotics by carrying out cell wall synthesis with the transpeptidase Penicillin-binding protein 2a (PBP2a), which cannot be inhibited by β-lactams. It has been proposed that PBP2a's active site is protected by two loops to reduce the probability of it binding with β-lactams. Previous crystallographic studies suggested that this protected active site opens for reaction once a native substrate binds at an allosteric domain of PBP2a. This opening was proposed for the new β-lactam ceftaroline's mechanism in successfully treating MRSA infections, i. e. by it binding to the allosteric site, thereby opening the active site to inhibition. In this work, we investigate the binding of ceftaroline at this proposed allosteric site using molecular dynamics simulations. Unstable binding was observed using the major force fields CHARMM36 and Amber ff14SB, and free energy calculations were unable to confirm a strong allosteric effect. Our study suggests that the allosteric effect induced by ceftaroline is weak at best.  相似文献   

8.
The rise of antibiotic resistance, especially in Staphylococcus aureus, and the increasing death rate due to multiresistant bacteria have been well documented. The need for new chemical entities and/or the identification of novel targets for antibacterial drug development is high. Lipoteichoic acid (LTA), a membrane-attached anionic polymer, is important for the growth and virulence of many Gram-positive bacteria, and interest has been high in the discovery of LTA biosynthesis inhibitors. Thus far, only a handful of LTA biosynthesis inhibitors have been described with moderate (MIC=5.34 μg mL−1) to low (MIC=1024 μg mL−1) activities against S. aureus. Herein we describe the identification of novel compounds that potently inhibit LTA biosynthesis in S. aureus, displaying impressive antibacterial activities (MIC as low as 0.25 μg mL−1) against methicillin-resistant S. aureus (MRSA). Under similar in vitro assay conditions, these compounds are 4-fold more potent than vancomycin and 8-fold more potent than linezolid against MRSA.  相似文献   

9.
《Ceramics International》2023,49(12):20168-20173
The rapid development of antibiotic resistance poses a huge threat to human health. Copper-based materials is a promising alternative to the traditional antibiotics due to its high efficacy and low resistance potential for bacterial infections. In this work, three-dimensional flower-like copper hydrogen phosphate nanosheet assembled microspheres (CP-NSMSs) are synthesized through a hydrolysis-assisted synthetic method using fructose-1,6-diphosphate (FDP) as the organic phosphate source. The copper hydrogen phosphate nanosheets with high aspect ratio provide a large amount of sharp edges which could penetrate bacterial membranes, resulting in the death of bacteria. Furthermore, the as-prepared CP-NSMSs exhibit the high peroxidase-like activity producing a large amount of reactive oxygen species (ROS) to kill bacteria. Based on the in vitro bacterial growth experiments, our CP-NSMSs show an excellent sterilization effect against both Gram-positive and Gram-negative bacteria. Therefore, the CP-NSMSs synthesized using the FDP as an organic phosphate source is expected to be a promising antibacterial agent with minimum resistance potential.  相似文献   

10.
Intensive and overuse of antibiotics during the last years has triggered a distinct rise in antibiotic resistance worldwide. In addition to the newly developed antimicrobials, there is a high demand for alternative treatment options against persistent bacterial infections. The biocidal impact of metal ions like copper (Cu2+), silver (Ag+), and zinc (Zn2+), also known as the oligodynamic effect has been used for ages to kill or inhibit the growth of microorganisms and to employ long-term prevention strategies against their biological antagonists. Herein, we report on the synthesis of Cu, Ag, and Zn metal and corresponding oxide nanoparticles immobilized on hollow mesoporous silica capsules (HMSCs) obtained by a hard-template assisted sol-gel synthesis followed by reduction of appropriate metal salts in the presence of HMSCs. Compartmentalization of nanosized metal and oxide clusters in Ag@HMSCs, Cu@HMSCs, and ZnO@HMSCs particles prevented their agglomeration and offered high release kinetics of metal ions between 2.0 and 3.7 mM during 24 h, as monitored by UV-vis analyses. The distribution and morphology of pristine and metal functionalized HMSCs were evaluated by transmission electron microscopy analysis revealing the successful synthesis of Ag, Cu, and ZnO nanoparticles supported on HMSCs. X-ray photoelectron spectroscopy revealed that mainly Cu(II), Ag(0), and Zn(II) species were present in the modified HMSCs. In addition to the surface attachment of preformed metal (Ag and Cu) and metal oxide (ZnO) cluster, nucleation of metal nanoparticles inside the void of HMSCs provided an internal reservoir which allowed for a time-dependent release of metal ions through slower dissolution rates leading to a long-term and sustained bacterial inhibition over several hours. The high antimicrobial efficiency of Ag@HMSCs, Cu@HMSCs, and ZnO@HMSCs particles was investigated toward both Gram-positive (Bacillus subtilis) and Gram-negative (Escherichia coli) bacteria by INT assays showing a complete growth inhibition for both bacteria types after 24 h. While Ag@HMSCs and Cu@HMSCs showed a higher susceptibility against Gram-negative bacteria, ZnO@HMSCs showed a higher susceptibility against Gram-positive bacteria. This demonstrates the promise of metal-loaded capsules as antibacterial delivery vehicles with dual-mode time-release profiles being potential alternatives for antibiotic drugs.  相似文献   

11.
The discovery of new antibiotic adjuvants is an attractive option for overcoming antimicrobial resistance. We have previously reported the discovery of a bis-6-bromoindolglyoxylamide derivative of spermine as being able to enhance the action of antibiotics against Gram-negative bacteria but suffers from being cytotoxic and red-blood cell haemolytic. A series of analogues was prepared exploring variation of the indolglyoxylamide unit, to include indole-3-acrylic, indole-3-acetic and indole-3-carboxylate units, and evaluated for antibiotic enhancing properties against a range of Gram-negative bacteria, and for intrinsic antimicrobial, cytotoxic and haemolytic properties. Two spermine derivatives, bearing 5-bromo-indole-3-acetic acid ( 17 ) and 5-methoxy-indole-3-acrylic acid ( 14 ) end groups were found to exhibit good to moderate antibiotic adjuvant activities for doxycycline towards the Gram-negative bacteria Pseudomonas aeruginosa, Escherichia coli and Klebsiella pneumoniae, but with more modest intrinsic antimicrobial activity and greatly reduced cytotoxic and haemolytic properties. The mechanism of action of the latter derivative identified its ability to disrupt the outer membranes of bacteria and to inhibit the AcrAB-TolC efflux pump directly or by inhibiting the proton gradient.  相似文献   

12.
糖肽类抗耐药菌抗生素的研究进展   总被引:1,自引:0,他引:1  
随着耐药性细菌的不断增多和细菌耐药性的增强,临床上耐药菌感染已不容忽视。糖肽类抗生素是公认的对革兰氏阳性菌具有良好抗菌作用的抗生素。对用于临床的万古霉素(Vancomycin)、去甲基万古霉素(Norvacomycin)、替考拉宁(Teicoplanin))和处于临床阶段中有前景的雷莫拉宁(Ramoplanin)、达巴万星(Dalbavancin)、奥利万星(Oritavancin))糖肽类抗生素的作用机制、体内代谢、临床用途及不良反应等做了简单介绍。  相似文献   

13.
Hospital-acquired infection is a great challenge for clinical treatment due to pathogens’ biofilm formation and their antibiotic resistance. Here, we investigate the effect of antiseptic agent polyhexamethylene biguanide (PHMB) and undecylenamidopropyl betaine (UB) against biofilms of four pathogens that are often found in hospitals, including Gram-negative bacteria Pseudomonas aeruginosa and Escherichia coli, Gram-positive bacteria Staphylococcus aureus, and pathogenic fungus, Candida albicans. We show that 0.02% PHMB, which is 10-fold lower than the concentration of commercial products, has a strong inhibitory effect on the growth, initial attachment, and biofilm formation of all tested pathogens. PHMB can also disrupt the preformed biofilms of these pathogens. In contrast, 0.1% UB exhibits a mild inhibitory effect on biofilm formation of the four pathogens. This concentration inhibits the growth of S. aureus and C. albicans yet has no growth effect on P. aeruginosa or E. coli. UB only slightly enhances the anti-biofilm efficacy of PHMB on P. aeruginosa biofilms. However, pretreatment with PslG, a glycosyl hydrolase that can efficiently inhibit and disrupt P. aeruginosa biofilm, highly enhances the clearance effect of PHMB on P. aeruginosa biofilms. Meanwhile, PslG can also disassemble the preformed biofilms of the other three pathogens within 30 min to a similar extent as UB treatment for 24 h.  相似文献   

14.
The emergence of multidrug-resistant pathogens that are resistant to the majority of currently available antibiotics is a significant clinical problem. The development of new antibacterial agents and novel approaches is therefore extremely important. We set out to explore the potential of catalytic antibiotics as a new paradigm in antibiotics research. Herein, we describe our pilot study on the design, synthesis, and biological testing of a series of new derivatives of the natural aminoglycoside antibiotic neomycin B for their potential action as catalytic antibiotics. The new derivatives showed significant antibacterial activity against wild-type bacteria and were especially potent against resistant and pathogenic strains including Pseudomonas aeruginosa and methicillin-resistant Staphylococcus aureus. Selected compounds displayed RNase activity even though the activity was not as high and specific as we would have expected. On the basis of the observed chemical and biochemical data, along with the comparative molecular dynamics simulations of the prokaryotic rRNA decoding site, we postulate that the rational design of catalytic antibiotics should involve not only their structure but also a comprehensive analysis of the rRNA A-site dynamics.  相似文献   

15.
A series of benzylaminoethylureido-tailed benzenesulfonamides was analyzed for their inhibition potential against bacterial carbonic anhydrases (CAs) such as VhCA α, β, and γ from Vibrio cholerae, and BpsCA β and γ-CAs from Burkholderia pseudomallei. Growing drug resistance against antibiotics demands alternative targets and mechanisms of action. As CA is essential for the survival of bacteria, such enzymes have the potential for developing new antibiotics. Most of the compounds presented excellent inhibition potential against VhCA γ compared to α and β, with Ki values in the range of 82.5–191.4 nM. Several sulfonamides exhibited excellent inhibition against BpsCA β with Ki values in the range of 394–742.8 nM. Recently it has been demonstrated that sufonamide CA inhibitors are effective against vancomycin-resistant enterococci. These data show that CA inhibition of pathogenic bacteria may lead to a new class of antibiotics.  相似文献   

16.
Discovering antibiotic molecules able to hold the growing spread of antimicrobial resistance is one of the most urgent endeavors that public health must tackle. The case of Gram-negative bacterial pathogens is of special concern, as they are intrinsically resistant to many antibiotics, due to an outer membrane that constitutes an effective permeability barrier. Antimicrobial peptides (AMPs) have been pointed out as potential alternatives to conventional antibiotics, as their main mechanism of action is membrane disruption, arguably less prone to elicit resistance in pathogens. Here, we investigate the in vitro activity and selectivity of EcDBS1R4, a bioinspired AMP. To this purpose, we have used bacterial cells and model membrane systems mimicking both the inner and the outer membranes of Escherichia coli, and a variety of optical spectroscopic methodologies. EcDBS1R4 is effective against the Gram-negative E. coli, ineffective against the Gram-positive Staphylococcus aureus and noncytotoxic for human cells. EcDBS1R4 does not form stable pores in E. coli, as the peptide does not dissipate its membrane potential, suggesting an unusual mechanism of action. Interestingly, EcDBS1R4 promotes a hemi-fusion of vesicles mimicking the inner membrane of E. coli. This fusogenic ability of EcDBS1R4 requires the presence of phospholipids with a negative curvature and a negative charge. This finding suggests that EcDBS1R4 promotes a large lipid spatial reorganization able to reshape membrane curvature, with interesting biological implications herein discussed.  相似文献   

17.
Infections caused by multidrug-resistant (MDR) bacteria, particularly Gram-negative bacteria, are an escalating global health threat. Often clinicians are forced to administer the last-resort antibiotic colistin; however, colistin resistance is becoming increasingly prevalent, giving rise to the potential for a situation in which there are no treatment options for MDR Gram-negative infections. The development of adjuvants that circumvent bacterial resistance mechanisms is a promising orthogonal approach to the development of new antibiotics. We recently disclosed that the known IKK-β inhibitor IMD-0354 potently suppresses colistin resistance in several Gram-negative strains. In this study, we explore the structure–activity relationship (SAR) between the IMD-0354 scaffold and colistin resistance suppression, and identify several compounds with more potent activity than the parent against highly colistin-resistant strains of Acinetobacter baumannii and Klebsiella pneumoniae.  相似文献   

18.
Advances in nanotechnology have seen the development of several microbiocidal nanoparticles displaying activity against biofilms. These applications benefit from one or more combinations of the nanoparticle properties. Nanoparticles may indeed concentrate drugs on their surface resulting in polyvalent effects and improved efficacy to fight against bacteria. Nanodiamonds (NDs) are among the most promising new materials for biomedical applications. We elucidate in this paper the effect of menthol modified nanodiamond (ND-menthol) particles on bacterial viability against Gram-positive (Staphylococcus aureus) and Gram-negative (Escherichia coli) bacteria. We show that while ND-menthol particles are non-toxic to both pathogens, they show significant antibiofilm activity. The presence of ND-menthol particles reduces biofilm formation more efficiently than free menthol, unmodified oxidized NDs and ampicillin, a commonly used antibiotic. Our findings might be thus a step forward towards the development of alternative non antibiotic based strategies targeting bacterial infections.  相似文献   

19.
The spread of antimicrobial resistance is a major threat to human health, and patients requiring prolonged antibiotic exposure are in desperate need of new therapeutic strategies. It has been hypothesized that tailoring our antibiotics to inhibit molecular targets specific to pathogens might stem the spread of resistance. A prime candidate for such a strategy is Pseudomonas aeruginosa, which can be found in the lungs of nearly all adult cystic fibrosis patients and, due to chronic exposure to antibiotics, has a high rate of multidrug-resistant strains. Although much research has been done on P. aeruginosa virulence factors as narrow-spectrum targets, less attention has been paid to primary carbon metabolism being leveraged for pathogen-specific mechanisms. However, early studies show that primary metabolic pathways, although shared amongst all organisms, contain intricacies specific to Pseudomonas species that have potential for antibiotic exploitation. Here we lay out some of this work in the hopes that it inspires researchers to continue developing a knowledge base for future antibiotic discovery to build upon and include a case study of a Pseudomonas primary metabolic pathway that has been targeted by small molecules in a species-specific manner.  相似文献   

20.
Traditional antimicrobial treatments consist of drugs which target different essential functions in pathogens. Nevertheless, bacteria continue to evolve new mechanisms to evade this drug-mediated killing with surprising speed on the deployment of each new drug and antibiotic worldwide, a phenomenon called antimicrobial resistance (AMR). Nowadays, AMR represents a critical health threat, for which new medical interventions are urgently needed. By 2050, it is estimated that the leading cause of death will be through untreatable AMR pathogens. Although antibiotics remain a first-line treatment, non-antibiotic therapies such as prophylactic vaccines and therapeutic monoclonal antibodies (mAbs) are increasingly interesting alternatives to limit the spread of such antibiotic resistant microorganisms. For the discovery of new vaccines and mAbs, the search for effective antigens that are able to raise protective immune responses is a challenging undertaking. In this context, outer membrane vesicles (OMV) represent a promising approach, as they recapitulate the complete antigen repertoire that occurs on the surface of Gram-negative bacteria. In this review, we present Escherichia coli and Pseudomonas aeruginosa as specific examples of key AMR threats caused by Gram-negative bacteria and we discuss the current status of mAbs and vaccine approaches under development as well as how knowledge on OMV could benefit antigen discovery strategies.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号