首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Ricinoleic acid (RA) is the main fatty acid component of castor oil and was found to inhibit Ca2+-signal transduction pathway-mediated cell cycle regulation in a yeast-based drug screening assay. RA is expected to have antidiabetic, antiallergy, and/or anticancer properties but its target molecule is unknown. To identify a novel pharmacological effect of RA, we investigated its target molecule in the Ca2+-signal transduction pathway. RA inhibition of calcineurin (CN) was examined in a yeast-based CN inhibitor screening assay using the rsp5A401E mutant and in a phosphatase assay using recombinant human CN. RA showed growth-restoration activity at 5 μg/spot in the CN inhibitor screening assay with the rsp5A401E yeast strain. Furthermore, it directly inhibited CN without immunophilins at Ki = 33.7 μM in a substrate-competitive manner. The effects of RA on CN in mammalian cells were further evaluated by measuring β-hexosaminidase (β-HEX) release in RBL-2H3 cells. RA at 50 μM suppressed the release of β-HEX from RBL-2H3 cells. Moreover, this compound was found to inhibit glycogen synthase kinase-3β (GSK-3β), as determined by a kinase assay using recombinant human GSK-3β. RA inhibited GSK-3β at Ki = 1.43 μM in a peptide substrate-competitive manner. The inhibition of GSK-3β by this molecule was further assessed in mammalian cells by measuring the inhibition of glucose production in H4IIE rat hepatoma cells. RA at 25 μM suppressed glucose production in these cells. These findings indicate that RA and/or castor oil could be a useful functional fatty acid to treat allergy or type 2 diabetes.  相似文献   

2.
Acyclic nucleoside phosphonates (ANPs) are a promising class of antimalarial therapeutic drug leads that exhibit a wide variety of Ki values for Plasmodium falciparum (Pf) and human hypoxanthine‐guanine‐(xanthine) phosphoribosyltransferases [HG(X)PRTs]. A novel series of ANPs, analogues of previously reported 2‐(phosphonoethoxy)ethyl (PEE) and (R,S)‐3‐hydroxy‐2‐(phosphonomethoxy)propyl (HPMP) derivatives, were designed and synthesized to evaluate their ability to act as inhibitors of these enzymes and to extend our ongoing antimalarial structure–activity relationship studies. In this series, (S)‐3‐hydroxy‐2‐(phosphonoethoxy)propyl (HPEP), (S)‐2‐(phosphonomethoxy)propanoic acid (CPME), or (S)‐2‐(phosphonoethoxy)propanoic acid (CPEE) are the acyclic moieties. Of this group, (S)‐3‐hydroxy‐2‐(phosphonoethoxy)propylguanine (HPEPG) exhibits the highest potency for PfHGXPRT, with a Ki value of 0.1 μM and a Ki value for human HGPRT of 0.6 μM . The crystal structures of HPEPG and HPEPHx (where Hx=hypoxanthine) in complex with human HGPRT were obtained, showing specific interactions with active site residues. Prodrugs for the HPEP and CPEE analogues were synthesized and tested for in vitro antimalarial activity. The lowest IC50 value (22 μM ) in a chloroquine‐resistant strain was observed for the bis‐amidate prodrug of HPEPG.  相似文献   

3.
The ubiquitously expressed Ser/Thr kinase CK2 is a key regulator in a variety of key processes in normal and malignant cells. Due to its distinctive anti-apoptotic and tumor-driving properties, elevated levels of CK2 have frequently been found in tumors of different origin. In recent years, development of CK2 inhibitors has largely been focused on ATP-competitive compounds; however, targeting the CK2α/CK2β interface has emerged as a further concept that might avoid selectivity issues. To address the CK2 subunit interaction site, we have synthesized halogenated CK2β-mimicking cyclic peptides modified with the cell-penetrating peptide sC18 to mediate cellular uptake. We investigated the binding of the resulting chimeric peptides to recombinant human CK2α using a recently developed fluorescence anisotropy assay. The iodinated peptide sC18-I-Pc was identified as a potent CK2α ligand (Ki=0.622 μm ). It was internalized in cells to a high extent and exhibited significant cytotoxicity toward cancerous HeLa cells (IC50=37 μm ) in contrast to non-cancerous HEK-293 cells. The attractive features and functionalities of sC18-I-Pc offer the opportunity for further improvement.  相似文献   

4.
More than 50 new inhibitors of the oncogenic Stat3 protein were identified through a structure–activity relationship (SAR) study based on the previously identified inhibitor S3I‐201 (IC50=86 μM , Ki>300 μM ). A key structural feature of these inhibitors is a salicylic acid moiety, which, by acting as a phosphotyrosine mimetic, is believed to facilitate binding to the Stat3 SH2 domain. Several of the analogues exhibit higher potency than the lead compound in inhibiting Stat3 DNA binding activity, with an in vitro IC50 range of 18.7–51.9 μM , and disruption of Stat3–pTyr peptide interactions with Ki values in the 15.5–41 μM range. One agent in particular exhibited potent inhibition of Stat3 phosphorylation in both breast and multiple myeloma tumor cells, suppressed the expression of Stat3 target genes, and induced antitumor effects in tumor cells harboring activated Stat3 protein.  相似文献   

5.
This paper describes the design, synthesis, and biological evaluation of peptidomimetic boronates as inhibitors of the 20S proteasome, a validated target in the treatment of multiple myeloma. The synthesized compounds showed a good inhibitory profile against the ChT‐L activity of 20S proteasome. Compounds bearing a β‐alanine residue at the P2 position were the most active, that is, 3‐ethylphenylamino and 4‐methoxyphenylamino (R)‐1‐{3‐[4‐(substituted)‐2‐oxopyridin‐1(2H)‐yl]propanamido}‐3‐methylbutylboronic acids ( 3 c and 3 d , respectively), and these derivatives showed inhibition constants (Ki) of 17 and 20 nM , respectively. In addition, they co‐inhibited post glutamyl peptide hydrolase activity ( 3 c , Ki=2.57 μM ; 3 d , Ki=3.81 μM ). No inhibition was recorded against the bovine pancreatic α‐chymotrypsin, which thus confirms the selectivity towards the target enzyme. Docking studies of 3 c and related inhibitors into the yeast proteasome revealed the structural basis for specificity. The evaluation of growth inhibitory effects against 60 human tumor cell lines was performed at the US National Cancer Institute. Among the selected compounds, 3 c showed 50 % growth inhibition (GI50) values at the sub‐micromolar level on all cell lines.  相似文献   

6.
Two novel sulfaguanidine series, six N-(N,N′-dialkyl/dibenzyl-carbamimidoyl) benzenesulfonamide derivatives and nine N-(N-alkyl/benzyl-carbamimidoyl) benzenesulfonamide derivatives, were obtained by desulfidative amination of easily accessible dimethyl arylsulfonylcarbonimidodithioates under catalyst- and base-free conditions. The newly synthesized compounds were tested for the inhibition of four different isozymes of human carbonic anhydrase (hCA I, II, IX and XII, EC 4.2.1.1). Both series reported here were inactive against the off-target isozymes hCA I and II (Ki>100 μM). Interestingly, all investigated compounds inhibited both target isozymes hCA IX and XII in the submicromolar to micromolar ranges in which Ki values spanned from 0.168 to 0.921 μM against hCA IX and from 0.335 to 1.451 μM against hCA XII. The results indicated that N-(N-alkyl/benzyl-carbamimidoyl) benzenesulfonamides were slightly more potent inhibitors than N-(N,N′-dialkyl/dibenzyl-carbamimidoyl) benzenesulfonamides. Among the evaluated compounds, N-n-octyl-substituted N-carbamimidoylbenzenesulfonamide showed the most significant activity with a Ki value of 0.168 μM against hCA IX, which was four-fold more selective toward this isozyme versus hCA XII. Again, another derivative from N-(N-alkyl/benzyl-carbamimidoyl) benzenesulfonamide series, N-p-methylbenzyl-substituted N-carbamimidoylbenzenesulfonamide, demonstrated superior inhibitory activity against hCA XII with a Ki value of 0.335 μM.  相似文献   

7.
Specific inhibition of the copper‐containing peptidylglycine α‐hydroxylating monooxygenase (PHM), which catalyzes the post‐translational modification of peptides involved in carcinogenesis and tumor progression, constitutes a new approach for combating cancer. We carried out a structure–activity study of new compounds derived from a well‐known PHM substrate analogue, the olefinic compound 4‐phenyl‐3‐butenoic acid (PBA). We designed, synthesized, and tested various PBA derivatives both in vitro and in silico. We show that it is possible to increase PBA affinity for PHM by appropriate functionalization of its aromatic nucleus. Compound 2 d , for example, bears a meta‐benzyloxy substituent, and exhibits better inhibition features (Ki=3.9 μM , kinact/Ki=427 M ?1 s?1) than the parent PBA (Ki=19 μM , kinact/Ki=82 M ?1 s?1). Docking calculations also suggest two different binding modes for PBA derivatives; these results will aid in the development of further PHM inhibitors with improved features.  相似文献   

8.
The kainate receptors are the least studied subfamily of ionotropic glutamate receptors. These receptors are thought to have a neuromodulatory role and have been associated with a variety of disorders in the central nervous system. This makes kainate receptors interesting potential drug targets. Today, structures of the ligand binding domain (LBD) of the kainate receptor GluK3 are only known in complex with the endogenous agonist glutamate, the natural product kainate, and two synthetic agonists. Herein we report structures of GluK3 LBD in complex with two 2,4‐syn‐functionalized (S)‐glutamate analogues to investigate their structural potential as chemical scaffolds. Similar binding affinities at GluK3 were determined for the 2‐(methylcarbamoyl)ethyl analogue (Ki=4.0 μM ) and the 2‐(methoxycarbonyl)ethyl analogue (Ki=1.7 μM ), in agreement with the similar positioning of the compounds within the binding pocket. As the binding affinity is similar to that of glutamate, this type of Cγ substituent could be used as a scaffold for introduction of even larger substituents reaching into unexplored binding site regions to achieve subtype selectivity.  相似文献   

9.
Fucosyltransferases (FucTs) usually catalyze the final step of glycosylation and are critical to many biological processes. High levels of specific FucT activities are often associated with various cancers. Here we report the development of a chemoenzymatic method for synthesizing a library of guanosine diphosphate β‐L ‐fucose (GDP‐Fuc) derivatives, followed by in situ screening for inhibitory activity against bacterial and human α‐1,3‐FucTs. Several compounds incorporating appropriate hydrophobic moieties were identified from the initial screening. These were individually synthesized, purified and characterized in detail for their inhibition kinetics. Compound 5 had a Ki of 29 nM for human FucT‐VI, and is 269 and 11 times more selective than for Helicobacter pylori FucT (Ki=7.8 μM) and for human FucT‐V (Ki=0.31 μM).  相似文献   

10.
Competitive glycosidase inhibitors are generally sugar mimics that are costly and tedious to obtain because they require challenging and elongated chemical synthesis, which must be stereo‐ and regiocontrolled. Here, we show that readily accessible achiral (E)‐1‐phenyl‐3‐(4‐strylphenyl)ureas are potent competitive α‐glucosidase inhibitors. A systematic synthesis study shows that the 1‐phenyl moiety on the urea is critical for ensuring competitive inhibition, and substituents on both terminal phenyl groups contribute to inhibition potency. The most potent inhibitor, compound 12 (IC50=8.4 μM , Ki=3.2 μM ), manifested a simple slow‐binding inhibition profile for α‐glucosidase with the kinetic parameters k3=0.005256 μM ?1 min?1, k4=0.003024 min?1, and ${K{{{\rm app}\hfill \atop {\rm i}\hfill}}}$ =0.5753 μM .  相似文献   

11.
A series of sulfonamide‐containing hydroxylated chalcone ( 4 – 7 ) and quinolinone ( 8 , 9 ) derivatives was synthesised and tested for inhibition of the trans‐sialidase from Trypanosoma cruzi (TcTS). IC50 values for these inhibitors ranged from 0.6 to 7.3 μM , with the dihydroxylated (catechol) derivatives being the tightest binders. Full kinetic analyses of inhibition were performed for these catechol derivatives, both for the transglycosylation reaction in the presence of lactose and for the hydrolysis reaction in its absence. Competitive inhibition was seen in each case with Ki values for 5 , 7 and 9 of 2.0, 2.2 and 0.2 μM , respectively, in the absence of lactose, and 4.6, 3.7 and 0.4 μM in its presence. None of the compounds tested showed any significant inhibition of the human sialidase Neu2, at concentrations up to 200 μM .  相似文献   

12.
Antiapoptotic Bcl‐2 family proteins, such as Bcl‐xL, Bcl‐2, and Mcl‐1, are often overexpressed in tumor cells, which contributes to tumor cell resistance to chemotherapies and radiotherapies. Inhibitors of these proteins thus have potential applications in cancer treatment. We discovered, through structure‐based virtual screening, a lead compound with micromolar binding affinity to Mcl‐1 (inhibition constant (Ki)=3 μM ). It contains a phenyltetrazole and a hydrazinecarbothioamide moiety, and it represents a structural scaffold not observed among known Bcl‐2 inhibitors. This work presents the structural optimization of this lead compound. By following the scaffold‐hopping strategy, we have designed and synthesized a total of 82 compounds in three sets. All of the compounds were evaluated in a fluorescence‐polarization binding assay to measure their binding affinities to Bcl‐xL, Bcl‐2, and Mcl‐1. Some of the compounds with a 3‐phenylthiophene‐2‐sulfonamide core moiety showed sub‐micromolar binding affinities to Mcl‐1 (Ki=0.3–0.4 μM ) or Bcl‐2 (Ki≈1 μM ). They also showed obvious cytotoxicity on tumor cells (IC50<10 μM ). Two‐dimensional heteronuclear single quantum coherence NMR spectra of three selected compounds, that is, YCW‐E5, YCW‐E10, and YCW‐E11, indicated that they bind to the BH3‐binding groove on Bcl‐xL in a similar mode to ABT‐737. Several apoptotic assays conducted on HL‐60 cells demonstrated that these compounds are able to induce cell apoptosis through the mitochondrial pathway. We propose that the compounds with the 3‐phenylthiophene‐2‐sulfonamide core moiety are worth further optimization as effective apoptosis inducers with an interesting selectivity towards Mcl‐1 and Bcl‐2.  相似文献   

13.
As the Zika virus protease is an essential and well-established target for the development of antiviral agents, we biochemically screened for inhibitors using a purified recombinantly expressed form of this enzyme. As a result, we were able to identify 10 new Zika virus protease inhibitors. These compounds are natural products and showed strong inhibition in the biochemical assays. Inhibitory constants values for the compounds ranged from 5 nM to 8 μM. Among the most potent inhibitors are flavonoids like irigenol hexa-acetate (Ki=0.28 μM), katacine (Ki=0.26 μM), theaflavin gallate (Ki=0.40 μM) and hematein (Ki=0.33 μM). Inhibitors from other groups of natural products include sennoside A (Ki=0.19 μM) and gossypol (Ki=0.70 μM). Several of the obtained compounds are known for their beneficial health effects and have acceptable pharmacokinetic characteristics. Thus, they could be of interest as lead compounds for the development of important and essential Zika antiviral drugs.  相似文献   

14.
Ligand‐based in silico hERG models were generated for 2 644 compounds using linear discriminant analysis (LDA) and support vector machines (SVM). As a result, the dataset used for the model generation is the largest publicly available (see Supporting Information). Extended connectivity fingerprints (ECFPs) and functional class fingerprints (FCFPs) were used to describe chemical space. All models showed area under curve (AUC) values ranging from 0.89 to 0.94 in a fivefold cross‐validation, indicating high model consistency. Models correctly predicted 80 % of an additional, external test set; Y‐scrambling was also performed to rule out chance correlation. Additionally models based on patch clamp data and radioligand binding data were generated separately to analyze their predictive ability when compared to combined models. To experimentally validate the models, 50 of the predicted hERG blockers from the Chembridge database and ten of the predicted non‐hERG blockers from an in‐house compound library were selected for biological evaluation. Out of those 50 predicted hERG blockers, tested at a concentration of 10 μM , 18 compounds showed more than 50 % displacement of [3H]astemizole binding to cell membranes expressing the hERG channel. Ki values of four of the selected binders were determined to be in the micromolar and high nanomolar range (Ki (VH 01 )=2.0 μM , Ki (VH 06 )=0.15 μM , Ki (VH 19 )=1.1 μM and Ki (VH 47 )=18 μM ). Of these four compounds, VH 01 and VH 47 showed also a second, even higher affinity binding site with Ki values of 7.4 nM and 36 nM , respectively. In the case of non‐hERG blockers, all ten compounds tested were found to be inactive, showing less than 50 % displacement of [3H]astemizole binding at 10 μM . These experimentally validated models were then used to virtually screen commercial compound databases to evaluate whether they contain hERG blockers. 109 784 (23 %) of Chembridge, 133 175 (38 %) of Chemdiv, 111 737 (31 %) of Asinex and 11 116 (18 %) of the Maybridge database were predicted to be hERG blockers by at least two of the models, a prediction which could, for example, be used as a pre‐filtering tool for compounds with potential hERG liabilities.  相似文献   

15.
Boronic acids are known reversible covalent inhibitors of serine β-lactamases. The selectivity and high potency of specific boronates bearing an amide side chain that mimics the β-lactam's amide side chain have been advanced in several studies. Herein, we describe a new class of boronic acids in which the amide group is replaced by a bioisostere triazole. The boronic acids were obtained in a two-step synthesis that relies on the solid and versatile copper-catalyzed azide–alkyne cycloaddition (CuAAC) followed by boronate deprotection. All of the compounds show very good inhibition of the Klebsiella pneumoniae carbapenemase KPC-2, with Ki values ranging from 1 nM to 1 μM, and most of them are able to restore cefepime activity against K. pneumoniae harboring blaKPC-2. In particular, compound 1 e , bearing a sulfonamide substituted by a thiophene ring, proved to be an excellent KPC-2 inhibitor (Ki=30 nM); it restored cefepime susceptibility in KPC-Kpn cells (MIC=0.5 μg/mL) with values similar to that of vaborbactam (Ki=20 nM, MIC in KPC-Kpn 0.5 μg/mL). Our findings suggest that α-triazolylboronates might represent an effective scaffold for the treatment of KPC-mediated infections.  相似文献   

16.
The emergence and spread of antibiotic‐resistant pathogens is a global public health problem. Metallo‐β‐lactamases (MβLs) such as New Delhi MβL‐1 (NDM‐1) are principle contributors to the emergence of resistance because of their ability to hydrolyze almost all known β‐lactam antibiotics including penicillins, cephalosporins, and carbapenems. A clinical inhibitor of MBLs has not yet been found. In this study we developed eighteen new diaryl‐substituted azolylthioacetamides and found all of them to be inhibitors of the MβL L1 from Stenotrophomonas maltophilia (Ki<2 μM ), thirteen to be mixed inhibitors of NDM‐1 (Ki<7 μM ), and four to be broad‐spectrum inhibitors of all four tested MβLs CcrA from Bacteroides fragilis, NDM‐1 and ImiS from Aeromonas veronii, and L1 (Ki<52 μM ), which are representative of the B1a, B1b, B2, and B3 subclasses, respectively. Docking studies revealed that the azolylthioacetamides, which have the broadest inhibitory activity, coordinate to the ZnII ion(s) preferentially via the triazole moiety, while other moieties interact mostly with the conserved active site residues Lys224 (CcrA, NDM‐1, and ImiS) or Ser221 (L1).  相似文献   

17.
Since its initial discovery as the basis for nicotinic acetylcholine receptor ligands, the 3-alkoxyisoxazole scaffold has been shown to be a versatile platform for the development of potent σ1 and σ2 receptor ligands. Herein we report a further SAR exploration of the 3-alkoxyisoxazole scaffold with the aim of obtaining potent σ2 receptor ligands. Various substitutions on the benzene ring and at the basic amino regions resulted in a total of 21 compounds that were tested for their binding affinities for the σ2 receptor. In particular, compound 51 [(2S)-1-(4-ammoniobutyl)-2-(((5-((3,4-dichlorophenoxy)methyl)isoxazol-3-yl)oxy)methyl)pyrrolidin-1-ium chloride] was identified as one of the most potent σ2 ligands within the series, with a Ki value of 7.9 nM. It demonstrated potent antiproliferative effects on both osteosarcoma cell lines 143B and MOS−J (IC50 values of 0.89 and 0.71 μM, respectively), relative to siramesine (IC50 values of 1.81 and 2.01 μM). Moreover, compound 51 inhibited clonal formation of osteosarcoma 143B cells at 1 μM, corresponding to half the dose required of siramesine for similar effects. The general cytotoxicity profile of compound 51 was assessed in a number of normal cell lines, including HaCaT, HAF, and LO2 cells. Furthermore, FACS analysis showed that compound 51 likely inhibits osteosarcoma cell growth by disruption of the cell cycle and promotion of apoptosis.  相似文献   

18.
We screened a small library of thiuram disulfides for inhibition of lymphoid tyrosine phosphatase (LYP) activity. The parent thiuram disulfide, disulfiram, inhibited LYP activity in vitro and in Jurkat T cells, whereas diethyldithiocarbamate failed to inhibit LYP at the concentrations tested. Compound 13 , an N‐(2‐thioxothiazolidin‐4‐one) analogue, was found to be the most potent LYP inhibitor in this series, with an IC50 value of 3 μM . Compound 13 inhibits LYP pseudo‐irreversibly, as evidenced by the time‐dependence of inhibition, with a Ki value of 1.1 μM and a kinact value of 0.004 s?1. The inhibition of LYP by compound 13 could not be reversed significantly by incubation with glutathione or by prolonged dialysis, but could be partially reversed by incubation with dithiothreitol. Compound 13 also inhibited LYP activity in Jurkat T cells.  相似文献   

19.
Inhibitors of the bacterial deacetylase LpxC are a promising class of novel antibiotics, being selectively active against Gram-negative bacteria. To improve the biological activity of reported C-furanosidic LpxC inhibitors, the stereochemistry at positions 3 and 4 of the tetrahydrofuran ring was varied. In chiral pool syntheses starting from d -gulono-γ-lactone and d -ribose, a series of (3S,4R)-configured dihydroxytetrahydrofuran derivatives was obtained, of which the (2S,5S)-configured hydroxamic acid 15 ((2S,3S,4R,5S)-N,3,4-trihydroxy-5-(4-{[4-(morpholinomethyl)phenyl]ethynyl}phenyl)tetrahydrofuran-2-carboxamide) was found to be the most potent LpxC inhibitor (Ki=0.4 μm ), exhibiting the highest antibacterial activity against E. coli BL21 (DE3) and the D22 strain. Additionally, molecular docking studies were performed to rationalize the obtained structure–activity relationships.  相似文献   

20.
Fungal infections are a global issue affecting over 150 million people worldwide annually, with 750 000 of these caused by invasive Candida infections. Azole drugs are the frontline treatment against fungal infections; however, resistance to current azole antifungals in C. albicans poses a threat to public health. Two series of novel azole derivatives, short and extended derivatives, have been designed, synthesised and investigated for CYP51 inhibitory activity, binding affinity and minimum inhibitory concentration (MIC) against C. albicans strains. The short derivatives were more potent against the C. albicans strains (e. g., MIC 2-(4-chlorophenyl)-N-(2,4-dichlorobenzyl)-3-(1H-imidazol-1-yl)propanamide ( 5 f ) <0.03 μg/mL, N-(4-((4-chlorophenyl)sulfonamido)benzyl)-2-phenyl-3-(1H-1,2,4-triazol-1-yl)propanamide ( 12 c ), 1 μg/mL, fluconazole 0.125 μg/mL) but both displayed comparable enzyme binding and inhibition ( 5 f Kd 62±17 nM, IC50 0.46 μM; 12 c Kd 43±18 nM, IC50 0.33 μM, fluconazole Kd 41±13 nM, IC50 0.31 μM, posaconazole Kd 43±11 nM, IC50 0.2 μM). The short series had poor selectivity for CaCYP51 over the human homologue, whereas the selectivity of the extended series, for example, compound 12 c , was higher (21.5-fold) than posaconazole (4.7-fold) based on Kd values, although posaconazole was more selective (615-fold) than 12 c (461-fold) based on IC50 values. Based on inhibitory activity and selectivity profile, the extended series are the better of the two series for further development.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号