首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
Selenium-modified nucleosides are powerful tools to study the structure and function of nucleic acids and their protein interactions. The widespread application of 2-selenopyrimidine nucleosides is currently limited by low yields in established synthetic routes. Herein, we describe the optimization of the synthesis of 2-Se-uridine and 2-Se-thymidine derivatives by thermostable nucleoside phosphorylases in transglycosylation reactions using natural uridine or thymidine as sugar donors. Reactions were performed at 60 or 80 °C and at pH 9 under hypoxic conditions to improve the solubility and stability of the 2-Se-nucleobases in aqueous media. To optimize the conversion, the reaction equilibria in analytical transglycosylation reactions were studied. The equilibrium constants of phosphorolysis of the 2-Se-pyrimidines were between 5 and 10, and therefore differ by an order of magnitude from the equilibrium constants of any other known case. Hence, the thermodynamic properties of the target nucleosides are inherently unfavorable, and this complicates their synthesis significantly. A tenfold excess of sugar donor was needed to achieve 40−48 % conversion to the target nucleoside. Scale-up of the optimized conditions provided four Se-containing nucleosides in 6–40 % isolated yield, which compares favorably to established chemical routes.  相似文献   

2.
Purine nucleoside phosphorylase (PNP) from Aeromonas hydrophila encoded by the deoD gene has been over‐expressed in Escherichia coli, purified, characterized about its substrate specificity and used for the preparative synthesis of some 6‐substituted purine‐9‐ribosides. Substrate specificity towards natural nucleosides showed that this PNP catalyzes the phosphorolysis of both 6‐oxo‐ and 6‐aminopurine (deoxy)ribonucleosides. A library of nucleoside analogues was synthesized and then submitted to enzymatic phosphorolysis as well. This assay revealed that 1‐, 2‐, 6‐ and 7‐modified nucleosides are accepted as substrates, whereas 8‐substituted nucleosides are not. A few transglycosylation reactions were carried out using 7‐methylguanosine iodide ( 4 ) as a D ‐ribose donor and 6‐substituted purines as acceptor. In particular, following this approach, 2‐amino‐6‐chloropurine‐9‐riboside ( 2c ), 6‐methoxypurine‐9‐riboside ( 2d ) and 2‐amino‐6‐(methylthio)purine‐9‐riboside ( 2g ) were synthesized in very high yield and purity.  相似文献   

3.
Palladium‐catalyzed C N bond forming reactions of 6‐bromo‐ as well as 6‐chloropurine ribonucleosides and the 2′‐deoxy analogues with arylamines are described. Efficient conversions were observed with palladium(II) acetate/Xantphos/cesium carbonate, in toluene at 100 °C. Reactions of the bromonucleoside derivatives could be conducted at a lowered catalytic loading [5 mol% Pd(OAc)2/7.5 mol% Xantphos], whereas good product yields were obtained with a higher catalyst load [10 mol% Pd(OAc)2/15 mol% Xantphos] when the chloro analogue was employed. Among the examples evaluated, silyl protection for the hydroxy groups appears better as compared to acetyl. The methodology has been evaluated via reactions with a variety of arylamines and by synthesis of biologically relevant deoxyadenosine and adenosine dimers. This is the first detailed analysis of aryl amination reactions of 6‐chloropurine nucleosides, and comparison of the two halogenated nucleoside substrates.  相似文献   

4.
The structurally unique “fleximer” nucleosides were originally designed to investigate how flexibility in a nucleobase could potentially affect receptor–ligand recognition and function. Recently they have been shown to have low-to-sub-micromolar levels of activity against a number of viruses, including coronaviruses, filoviruses, and flaviviruses. However, the synthesis of distal fleximers in particular has thus far been quite tedious and low yielding. As a potential solution to this issue, a series of proximal fleximer bases (flex-bases) has been successfully coupled to both ribose and 2′-deoxyribose sugars by using the N-deoxyribosyltransferase II of Lactobacillus leichmannii (LlNDT) and Escherichia coli purine nucleoside phosphorylase (PNP). To explore the range of this facile approach, transglycosylation experiments on a thieno-expanded tricyclic heterocyclic base, as well as several distal and proximal flex-bases were performed to determine whether the corresponding fleximer nucleosides could be obtained in this fashion, thus potentially significantly shortening the route to these biologically significant compounds. The results of those studies are reported herein.  相似文献   

5.
Fluorescent nucleosides are widely used as probes of biomolecular structure and mechanism in the context of DNA, but they often exhibit low quantum yields because of quenching by neighboring DNA bases. Here we characterize the quenching by DNA of fluorescent nucleosides that have pyrene (Y), perylene (E), benzopyrene (B), or 2-aminopurine (2AP) as nucleobase replacements, and we investigate the effect of inserting varied nucleosides as potential "insulators" between the fluorescent nucleosides and other nearby DNA bases as a strategy for increasing quantum yields. The data show that the hydrocarbons are quenched by adjacent pyrimidines, with thymine being the strongest quencher. The quantum yield of pyrene is quenched 120-fold by a single adjacent T, that of benzopyrene tenfold, and that of perylene by a factor of 2.5. Quenching of excimer and exciplex dinucleoside labels (Y-Y, Y-E, E-E, etc.) was considerably lessened, but was strongest with neighboring thymine. 2-Aminopurine (2AP) is most strongly quenched (15-fold) by neighboring G. We tested four different insulator candidates for reducing this quenching by measuring the fluorescence of short oligonucleotides containing insulators placed between a fluorescent base and a quenching base. The insulators tested were a C(3) abasic spacer (S), dihydrothymidine nucleoside (DHT), terphenyl nucleoside (TP), and adenine deoxynucleoside (dA). Results showed that the abasic spacer had little effect on quenching, while the other three had substantial effects. DHT and terphenyl enhanced fluorescence of the fluorophores by factors of 5 to 70. Adenine base reduced the quenching of pyrene 40-fold. The results underscore the importance of the nearest neighbors in DNA-quenching mechanisms, and establish simple strategies for enhancing fluorescence in labeled DNAs.  相似文献   

6.
Prodrug technologies aimed at delivering nucleoside monophosphates into cells (protides) have proved to be effective in improving the therapeutic potential of antiviral and anticancer nucleosides. In these cases, the nucleoside monophosphates are delivered into the cell, where they may then be further converted (phosphorylated) to their active species. Herein, we describe one of these technologies developed in our laboratories, known as the phosphoramidate protide method. In this approach, the charges of the phosphate group are fully masked to provide efficient passive cell‐membrane penetration. Upon entering the cell, the masking groups are enzymatically cleaved to release the phosphorylated biomolecule. The application of this technology to various therapeutic nucleosides has resulted in improved antiviral and anticancer activities, and in some cases it has transformed inactive nucleosides to active ones. Additionally, the phosphoramidate technology has also been applied to numerous antiviral nucleoside phosphonates, and has resulted in at least three phosphoramidate‐based nucleotides progressing to clinical investigations. Furthermore, the phosphoramidate technology has been recently applied to sugars (mainly glucosamine) in order to improve their therapeutic potential. The development of the phosphoramidate technology, mechanism of action and the application of the technology to various monophosphorylated nucleosides and sugars will be reviewed.  相似文献   

7.
Over the last decade, click chemistry reactions, that are fast, simple to use, easy to purify, versatile, regiospecific, and give high product yields have gained significant importance for synthetic chemistry. The design of these synthetic tools that can be controlled by external stimuli such as microwave, ultrasound, light or electric pulses is a research area with strong interest for modern chemistry. In this contribution, the potential of externally stimulated click reactions in the preparation of various macromolecular structures are discussed along with the selected examples. Considering classical click reactions, external stimulation provides a number of advantages and goals, such as programmable synthesis and precise control over complex and multicomponent systems. Furthermore, these click reactions bring some improvements or overcome existing problems of present click reactions, such as toxicity, irreversible oxidation of catalyst and lack of spatiotemporal control over the reaction initiation. Due to these features, externally stimulated click reactions have various applications in a wide variety of research areas, including materials sciences, polymer chemistry, and pharmaceutical science. The next generation click reactions enable chemists to finally harness available chemical diversity for the sequence-programmable synthesis and modification of macromolecular materials.  相似文献   

8.
The poor solubility of many nucleosides and nucleobases in aqueous solution demands harsh reaction conditions (base, heat, cosolvent) in nucleoside phosphorylase-catalyzed processes to facilitate substrate loading beyond the low millimolar range. This, in turn, requires enzymes that can withstand these conditions. Herein, we report that the pyrimidine nucleoside phosphorylase from Thermus thermophilus is active over an exceptionally broad pH (4–10), temperature (up to 100 °C) and cosolvent space (up to 80 % (v/v) nonaqueous medium), and displays tremendous stability under harsh reaction conditions with predicted total turnover numbers of more than 106 for various pyrimidine nucleosides. However, its use as a biocatalyst for preparative applications is critically limited due to its inhibition by nucleobases at low concentrations, which is unprecedented among nonspecific pyrimidine nucleoside phosphorylases.  相似文献   

9.
Nucleoside natural products show diverse biological activities and serve as leads for various application purposes, including human and veterinary medicine and agriculture. Studies in the past decade revealed that these nucleosides are biosynthesized through divergent mechanisms, in which early steps of the pathways can be classified into two types (C5' oxidation and C5' radical extension), while the structural diversity is created by downstream tailoring enzymes. Based on this biosynthetic logic, we investigated the genome mining discovery potentials of these nucleosides using the two enzymes representing the two types of C5' modifications: LipL-type α-ketoglutarate (α-KG) and Fe-dependent oxygenases and NikJ-type radical S-adenosyl-L-methionine (SAM) enzymes. The results suggest that this approach allows discovery of putative nucleoside biosynthetic gene clusters (BGCs) and the prediction of the core nucleoside structures. The results also revealed the distribution of these pathways in nature and implied the possibility of future genome mining discovery of novel nucleoside natural products.  相似文献   

10.
Computer‐aided approaches coupled with medicinal chemistry were used to explore novel carbocyclic nucleosides as potential anti‐hepatitis C virus (HCV) agents. Conformational analyses were carried out on 6‐amino‐1H‐pyrazolo[3,4‐d]pyrimidine (6‐APP)‐based carbocyclic nucleoside analogues, which were considered as nucleoside mimetics to act as HCV RNA‐dependent RNA polymerase (RdRp) inhibitors. Structural insight gained from the modeling studies revealed the molecular basis behind these nucleoside mimetics. The rationally chosen 6‐APP analogues were prepared and evaluated for anti‐HCV activity. RdRp SiteMap analysis revealed the presence of a hydrophobic cavity near C7 of the nucleosides; introduction of bulkier substituents at this position enhanced their activity. Herein we report the identification of an iodinated compound with an EC50 value of 6.6 μM as a preliminary anti‐HCV lead.  相似文献   

11.
The conformational preference of human nucleoside transporters (hNTs) with respect to sugar ring was examined using conformationally fixed purine and pyrimidine nucleosides built on a bicyclo[3.1.0]hexane template. These fixed-conformation nucleosides, methanocarba-deoxyadenosine or methanocarba-deoxycytidine in North (C3'-endo, N-MCdA and N-MCdC) or South (C2'-endo, S-MCdA and S-MCdC) conformations, were used to study inhibition of equilibrative (hENT1-4) and concentrative (hCNT1-3) nucleoside transport by individual recombinant hNTs produced in Saccharomyces cerevisiae cells or Xenopus laevis oocytes. Our results indicated that nucleosides in the North conformation were potent inhibitors of transport mediated by hCNTs whereas South nucleosides were inhibitors of hENTs, thus showing differences in the interaction with the hNTs. In summary, hCNTs exhibited strong preferences for North nucleosides whereas hENTs exhibited slight preferences for South nucleosides, demonstrating for the first time different conformational preferences among members of the two families of hNTs.  相似文献   

12.
Glycoside hydrolases (GHs) are attractive tools for multiple biotechnological applications. In conjunction with their hydrolytic function, GHs can perform transglycosylation under specific conditions. In nature, oligosaccharide synthesis is performed by glycosyltransferases (GTs); however, the industrial use of GTs is limited by their instability in solution. A key difference between GTs and GHs is the flexibility of their binding site architecture. We have used the xylanase from Bacillus circulans (BCX) to study the interplay between active-site flexibility and transglycosylation. Residues of the BCX “thumb” were substituted to increase the flexibility of the enzyme binding site. Replacement of the highly conserved residue P116 with glycine shifted the balance of the BCX enzymatic reaction toward transglycosylation. The effects of this point mutation on the structure and dynamics of BCX were investigated by NMR spectroscopy. The P116G mutation induces subtle changes in the configuration of the thumb and enhances the millisecond dynamics of the active site. Based on our findings, we propose the remodelling of the GH enzymes glycon site flexibility as a strategy to improve the transglycosylation efficiency of these biotechnologically important catalysts.  相似文献   

13.
The enzymatic transglycosylation of 2,6‐dichloropurine (26DCP) and 6‐chloro‐2‐fluoropurine (6C2FP) with uridine, thymidine and 1‐(β‐D ‐arabinofuranosyl)‐uracil as the pentofuranose donors and recombinant thermostable nucleoside phosphorylases from G. thermoglucosidasius or T. thermophilus as biocatalysts was studied. Selection of 26DCP and 6C2FP as substrates is determined by their higher solubility in aqueous buffer solutions compared to most natural and modified purines and, furthermore, synthesized nucleosides are valuable precursors for the preparation of a large number of biologically important nucleosides. The substrate activity of 26DCP and 6C2FP in the synthesis of their ribo‐ and 2′‐deoxyribo‐nucleosides was closely similar to that of related 2‐amino‐ (DAP), 2‐chloro‐ and 2‐fluoroadenines; the efficiency of the synthesis of β‐D ‐arabinofuranosides of 26DCP and 6C2FP was lower vs. that of DAP under similar reaction conditions. For a convenient and easier recovery of the biocatalysts, the thermostable enzymes were immobilized on MagReSyn® epoxide beads and the biocatalyst showed high catalytic efficiency in a number of reactions. As an example, 6‐chloro‐2‐fluoro‐(β‐D ‐ribofuranosyl)‐purine ( 9 ), a precursor of various antiviral and antitumour drugs, was synthesized by the immobilized enzymes at 60 °C under high substrate concentrations (uridine:purine ratio of 2:1, mol). The synthesis was successfully scaled‐up [uridine (2.5 mmol), base (1.25 mmol); reaction mixture 50 mL] to afford 9 in 60% yield. The reaction reveals the great practical potential of this enzymatic method for the efficient production of modified purine nucleosides of pharmaceutical interest.

  相似文献   


14.
The increased interest in (enzymatic) transformations between nucleosides and nucleobases has demanded the development of efficient analytical tools. In this report, we present an update and extension of our recently described method for monitoring these reactions by spectral unmixing. The presented method uses differences in the UV absorption spectra of nucleosides and nucleobases after alkaline quenching to derive their ratio based on spectral shape by fitting normalized reference spectra. It is applicable to a broad compound spectrum comprising more than 35 examples, offers HPLC-like accuracy, ease of handling and significant reductions in both cost and data acquisition time compared to other methods. This contribution details the principle of monitoring reactions by spectral unmixing, gives recommendations regarding solutions to common problems and applications that necessitate special sample treatment. We provide software, workflows and reference spectra that facilitate the straightforward and versatile application of the method.  相似文献   

15.
Synthetic nucleosides, designed to mimic naturally occurring nucleosides, are important antiviral and anticancer chemotherapeutic agents. However, nucleosides are not active as such and need to be metabolized, step by step, to their corresponding active nucleoside triphosphates (NTPs). This is mediated by phosphorylating enzymes, mainly host cellular kinases with strong specificity for their substrates; in many cases, this specificity prevents efficient conversion into the NTPs. To circumvent this metabolic handicap, successful nucleo(s/t)ide prodrugs have been developed as a valuable concept in the design of effective drugs. The unique concept of the TriPPPro approach, developed by Chris Meier and colleagues, is a powerful tool for the intracellular delivery of active NTPs, bypassing all the phosphorylation steps required by nucleosides to yield the active NTP metabolites. This concept is illustrated herein with general examples.  相似文献   

16.
17.
Slurries of Victorian brown coal in either tetralin (1:3) or a hydrogenated creosote oil (HKC 300) (1:3) were reacted with hydrogen in a continuous reactor system both with and without the addition of iron/tin based catalysts. The product yields and distributions from reactions using HKC 300 oil as a solvent are different from those obtained using tetralin. Under similar operating conditions, conversions are slightly lower and the asphaltene yields are higher for reactions in HKC 300 relative to those in tetralin. These differences are presumably due to the poorer hydrogen donor ability of the HKC 300. The yields of asphaltols, asphaltenes and oils for reactions in both solvent systems under a wide range of conditions are discussed as a function of overall conversion.  相似文献   

18.
Herein we describe the synthesis of lipophilic triphosphate prodrugs of abacavir, carbovir, and their 1′,2′‐cis‐substituted carbocyclic analogues. The 1′,2′‐cis‐carbocyclic nucleosides were prepared by starting from enantiomerically pure (1R,2S)‐2‐((benzyloxy)methyl)cyclopent‐3‐en‐1‐ol by a microwave‐assisted Mitsunobu‐type reaction with 2‐amino‐6‐chloropurine. All four nucleoside analogues were prepared from their 2‐amino‐6‐chloropurine precursors. The nucleosides were converted into their corresponding nucleoside triphosphate prodrugs (TriPPPro approach) by application of the H‐phosphonate route. The TriPPPro compounds were hydrolyzed in different media, in which the formation of nucleoside triphosphates was proven. While the TriPPPro compounds of abacavir and carbovir showed increased antiviral activity over their parent nucleoside, the TriPPPro compounds of the 1′,2′‐cis‐substituted analogues as well as their parent nucleosides proved to be inactive against HIV.  相似文献   

19.
Although various syntheses of the nucleic acid bases exist and ribose is a product of the formose reaction, no prebiotically plausible methods for attaching pyrimidine bases to ribose to give nucleosides have been described. Kinetic and thermodynamic factors are thought to mitigate against such condensation reactions in aqueous solution. This inability to produce pyrimidine nucleosides and hence nucleotides is a major stumbling block of the "RNA World" hypothesis and has led to suggestions of alternative nucleic acids as evolutionary precursors to RNA. Here, we show that a process in which the base is assembled in stages on a sugar phosphate can produce cytidine nucleotides. The sequential action of cyanamide and cyanoacetylene on arabinose-3-phosphate produces cytidine-2',3'-cyclophosphate and arabinocytidine-3'-phosphate.  相似文献   

20.
Highly selective molecularly imprinted polymers (MIPs) having a phthalocyanine-based recognition centre as receptors for RNA nucleoside were prepared. In particular, a zinc phthalocyanine peripherally substituted with methacrylic groups was synthesized and utilized as functional monomer in combination with methacrylic acid (MAA) to form polymers with the aim to obtain MIPs having improved binding capacity and selectivity for nucleosides. Tri-O-acetyladenosine (TOAA) was utilized as model template in the preparation of the MIPs. The corresponding non metallated phthalocyanine was also prepared and used as functional monomer for the preparation of the MIPs in order to understand the role of the Zinc(II) ion in the binding capacity of the polymers towards the template molecule. The MIP prepared by using both the zinc phthalocyanine and MAA showed higher binding ability towards TOAA compared to the MIPs prepared using only MAA or its combination with the non metallated phthalocyanine. The results obtained suggest that the nucleoside is specifically bound to the polymer through multi-point interactions involving both the coordination of the nucleoside to the metal of the phthalocyanine and hydrogen bonding/electrostatic interactions with MAA and the modifiers linked to the phthalocyanines. As for the selectivity, the MIPs exhibited relative high binding affinities for TOAA while they did not show any binding capacity for the other RNA nucleosides.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号