首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 609 毫秒
1.
Junchuan Zhang 《Polymer》2005,46(13):4979-4985
Two kinds of polyester porous scaffolds having cubic and spherical macropores were fabricated, and a comparative study of their morphologies and mechanical properties were made in this paper. Poly(d,l-lactic-co-glycolic acid) (PLGA) scaffolds were prepared by room temperature compression molding and particulate leaching method based on cubic NaCl particles and paraffin spheres with a similar size range of 355-450 μm and a series of porosities (77-97%). Scanning electronic microscopy demonstrated that the spherical pore scaffolds exhibited better pore interconnectivity than the cubic pore ones. In compressive tests of both kinds of scaffolds, striking yield peaks were found at relatively low porosities, but just non-linear flexure behavior was observed at high porosities. The power-law relationships of compressive modulus and compressive strength versus porosity were confirmed in both foams. Comparison of the underlying scaling exponents reveals that the scaffolds with spherical pores are, at high porosities, with better compressive properties to a certain degree in contrast to those with cubic pores.  相似文献   

2.
A new family of bioceramic scaffolds consisting of zirconia foam-like structures with 58S bioactive glass (BG) coating was developed. Three open-cell structures fabricated by the foam replica method were coated via immersion in a sol-gel solution. The coating technique was optimised controlling the sol viscosity, condensation time, and the number of immersions in order to increase the coating thickness. The scaffolds chemical and structural characteristics were evaluated before in vitro tests, including the Ca/P ratio, crystalline phase composition, pH change, pore diameter and microporosity of the scaffolds struts. In vitro tests were performed by culturing MG-63 human osteoblast-like cells. An increase in cell proliferation of 100% was found with the decrease in pore size from 700 to 120 μm. Also, with the presence of the 58S-BG coating, an increase of cell proliferation was reached, which indicates the positive effect of the BG coating on the otherwise bioinert ceramic scaffold.  相似文献   

3.
The biocompatible and degradable macroporous bioceramic scaffolds with high mechanical properties and interconnected porous structures play an important role in hard tissue regeneration and bone tissue engineering applications. In this study, the improvement of mechanical properties of macroporous β-tricalcium phosphate [β-Ca3(PO4)2, β-TCP] bioceramic scaffolds with uniform macropore size and interconnected pores were fabricated by impregnation of the synthesized β-TCP nano-powder slurry into polymeric frames. The microstructures, mechanical properties and in vitro degradation of the fabricated samples were investigated. For a comparison, β-TCP scaffolds were also fabricated from commercial micro-size powders under the same conditions. The resultant scaffolds showed porosities ∼65% with uniform macropore size ranging from 400 to 550 μm and interconnected pore size ∼100 μm. The compressive strength of the samples fabricated from nano-size powders reached 10.87 MPa, which was almost twice as high as those fabricated from commercial micro-size powders, and was comparable to the high-end value (2–10 MPa) of human cancellous bone. Furthermore, the degradation of the β-TCP bioceramics fabricated from nano-size powders was apparently lower than those fabricated from commercial micro-size powders, suggesting the possible control of the degradation of the scaffolds by regulating initial powder size. Regarding the excellent mechanical properties and porous structures, the obtained macroporous β-TCP bioceramic scaffolds can be used in hard tissue regeneration and bone tissue engineering applications.  相似文献   

4.
The compressive strength and MC3T3 cell proliferation response of robocast hydroxyapatite‐derived scaffolds was evaluated for samples fabricated by conventional and freeze‐drying methods followed by sintering at 1100 or 1300°C. Both the sintering temperature and, especially, the drying method affected significantly the size and morphology of the residual microporosity within the robocast scaffold's struts. The freeze‐drying method generated a persistent large (1‐10 μm) microporosity of dendritic morphology that was found to improve the biological response of hydroxyapatite‐derived scaffolds. Conversely, conventional drying enhances the compressive strength of the structures. Strength was also increased at the higher sintering temperature, although at the expense of a poorer cell proliferation behavior. The results of this study suggest that the use of a freeze drying process after printing by robocasting provides a very appropriate method for enhancing the biological performance and reliability of bioceramic robocast scaffolds without severely reducing their compressive strength. And, thus, shows promise as an effective method to optimize the performance of robocast scaffolds for bone tissue regeneration.  相似文献   

5.
《Ceramics International》2017,43(9):6778-6785
In this study, for the first time honeycomb β-tricalcium phosphate (β-TCP) scaffolds were fabricated through an extrusion technique. The physicochemical properties and cell behaviors of the honeycomb β-TCP scaffolds were investigated. The results showed that scaffolds were characterized by ordered channel-like macropores and unidirectional interconnection. The pore structure and mechanical strength could be tailored by changing the parameters of extrusion molds. The pore size of scaffolds was in the range of 400–800 µm approximately, while their compressive strength parallel to the pore direction and porosity ranged from 14 to 20 MPa and 60–70%, respectively. The in vitro cell behavior demonstrated that cells could well attach on the surfaces and grow into the inner channel-like pores of thescaffolds; the scaffolds with higher porosity showed better cell proliferation but poorer cell differentiation. The honeycomb scaffolds fabricated by extrusion technique are potential candidate for bone tissue engineering.  相似文献   

6.
Porous hydroxyapatite (HA) scaffolds with interconnected spherical pores were fabricated by slip casting using a polymer template. Templates were produced using polymer beads, NaCl, and adhesive (N100). Effects of the preparation process on the pore structures and mechanical properties of the porous HA scaffolds were investigated. Pore interconnectivity was improved by adding NaCl particles with appropriate diameters to the polymer template. The size of the adhesive area could be controlled by adjusting the concentration of N100. The pore size could be controlled between 200 ± 42 and 400 ± 81 μm, and the porosity between 50.2 and 73.1%, by changing the size of the polymer beads and the volume of the NaCl particles. The compressive strength decreased as the porosity or pore size increased.  相似文献   

7.
《Ceramics International》2017,43(15):11780-11785
Porous hydroxyapatite/tricalcium phosphate (HA/TCP) ceramic scaffolds with a uniform unidirectional pore structure were successfully fabricated by an ice-templating method by using Ca-deficient HA whiskers and phosphate bioglass. HA whiskers showed good dispersibility in the slurry and favoured the formation of interconnected pores in the scaffolds. Addition of bioglass powders enhanced the material sintering process and the phase transformation of Ca-deficient HA to β-TCP. Calcium-phosphate-based scaffolds with a composition from HA to an HA/β-TCP complex could be obtained by controlling the freezing moulding system and slurry composition. The fabricated scaffolds had a porosity of 75–85%, compressive strength of 0.5–1.0 MPa, and a pore size range of 130–200 µm.  相似文献   

8.
Three-dimensional biocompatible porous structures can be fabricated using different methods. However, the biological and mechanical behaviors of scaffolds are the center of focus in bone tissue engineering. In this study, tricalcium phosphate scaffolds with similar porosity contents but different pore morphologies were fabricated using two different techniques, namely, the replica method and the pore-forming agent method. The samples fabricated using the pore-forming agent showed more than two times higher compressive and bending strengths and more than three times higher compressive moduli. Furthermore, a thin layer of agarose coating improved the compressive and bending strength of both types of ceramic scaffolds. Subsequently, the samples’ capability to guide biomineralization was evaluated by immersion into a simulated body fluid that developed Ca-P nano-platelets formation and enhanced the compressive strength. Finally, the tetrazolium-based colorimetric (MTT) assay was used to evaluate L929 cell viability and proliferation on all the samples and confirmed that cell behavior was not affected by pore morphology or agarose coating. In summary, samples produced by the use of the pore-forming agent showed higher potential to be applied as bone scaffolds in tissue engineering applications.  相似文献   

9.
The use of reticulated porous ceramics(RPCs) was of great interest in high-temperature catalytic application owing to their high surface area. In order to further optimize the pore structure and mechanical properties of RPCs, vacuum infiltration with CaCO3-Al2O3 slurries process was applied to fabricate Al2O3-ZrO2 RPCs with hierarchical pore structures. The pores within ceramic struts were prepared by processes of CaCO3 decomposition and calcium hexaluminate grains growth. And the compressive residual stress was formed within multi-layered struts owing to the difference in the thermal expansion of coating layer and ceramic struts, which was established as a key factor in improving the mechanical properties and thermal shock resistance of RPCs. Furthermore, the size of pores within struts ranging from 5 μm to 14 μm affected the thermal shock resistance of RPCs significantly based on grey incidence analysis. And the potential of this materials as high-temperature catalyst supports was demonstrated.  相似文献   

10.
Poly(L ‐lactic acid) (PLLA) scaffolds with pore diameters from several micrometers to ~300 μm were fabricated by a specially elaborated thermally induced phase separation technique. Two different coarsening protocols, i.e., normal coarsening and multi‐step coarsening were compared in consideration of phase separation and domain growth. A normal coarsening route produced scaffolds with pore size from several micrometers to 150 μm depending on the coarsening time after phase separation, accompanying with the emergence of isolated pores at long time coarsening. Scaffolds with large pores with size up to ~300 μm were fabricated by the two‐step coarsening technique, e.g., the PLLA‐solvent (dioxane/water) system was coarsened at a temperature after phase separation for a period, followed by coarsening at a lower temperature for another period. In parallel with formation of the large pores, the interconnectivity between pores was also improved, which was evidenced by scanning electron microscopy, gelatin solution pervasion, and collagen entrapment. The present technique provides the ability to produce scaffolds with high purity, controllable microstructures, and ease of modification, and hence can be widely used in tissue engineering field. © 2006 Wiley Periodicals, Inc. J Appl Polym Sci 101: 3336–3342, 2006  相似文献   

11.
Biodegradable poly(L ‐lactide) (PLLA) scaffolds with well‐controlled interconnected irregular pores were fabricated by a porogen leaching technique using gelatin particles as the porogen. The gelatin particles (280–450 μm) were bonded together through a treatment in a saturated water vapor condition at 70°C to form a 3‐dimensional assembly in a mold. PLLA was dissolved in dioxane and was cast onto the gelatin assembly. The mixtures were then freeze‐dried or dried at room temperature, followed by removal of the gelatin particles to yield the porous scaffolds. The microstructure of the scaffolds was characterized by scanning electron microscopy with respect to the pore shape, interpore connectivity, and pore wall morphology. Compression measurements revealed that scaffolds fabricated by freeze‐drying exhibited better mechanical performance than those by room temperature dying. Along with the increase of the polymer concentration, the porosity of the scaffolds decreased whereas the compressive modulus increased. When the scaffolds were in a hydrated state, the compressive modulus decreased dramatically. © 2005 Wiley Periodicals, Inc. J Appl Polym Sci 98: 1373–1379, 2005  相似文献   

12.
In this study, elastic porous polydimethylsiloxane (PDMS) cell scaffolds were fabricated by vacuum‐assisted resin transfer moulding (VARTM) and particle leaching technologies. To control the porous morphology and porosity, different processing parameters, such as compression load, compression time, and NaCl particle size for preparing NaCl preform, were studied. The porous structures of PDMS cell scaffolds were characterized by scanning electron microscopy (SEM). The properties of PDMS cell scaffolds, including porosity, water absorption, interconnectivity, compression modulus, and compression strength were also investigated. The results showed that after the porogen–NaCl particles had been leached, the remaining pores had the sizes of 150–300, 300–450, and 450–600 μm, which matched the sizes of the NaCl particles. The interconnectivity of PDMS cell scaffolds increases with an increase in the size of NaCl particles. It was also found that the smaller the size of the NaCl particles, the higher the porosity and water absorption of PDMS cell scaffolds. The content of residual NaCl in PDMS/NaCl scaffolds reduces under ultrasonic treatment. In addition, PDMS scaffolds with a pore size of 300–450 μm have better mechanical properties compared to those with pore sizes of 150–300 and 450–600 μm. © 2015 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2016 , 133, 42909.  相似文献   

13.
Porous chitosan scaffolds were prepared with a freeze‐casting technique with different concentrations, 1.5 and 3 wt %, and also different cooling rates, 1 and 4°C/min. The pore morphology, porosity, pore size, mechanical properties, and water absorption characteristics of the scaffolds were studied. Scanning electron microscopy images showed that the freeze‐cast scaffolds were fully interconnected because of the existence of pores on the chitosan walls in addition to many unidirectionally elongated pores. Increases in the chitosan concentration and freezing rate led to elevations in the thickness of the chitosan walls and reductions in the pores size, respectively. These two results led to the enhancement of the compressive strength from 34 to 110 kPa for the scaffolds that had 96–98% porosity. Also, augmentation of the chitosan concentration and decreases in the freezing rate led to the reduction of the number of pores on the chitosan walls. Furthermore, the volume of water absorption increased with a reduction in the chitosan concentration and cooling rate from 690 to 1020%. © 2014 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2015 , 132, 41476.  相似文献   

14.
There is significant interest in the design and processing of porous ceramics due to their use in a variety of applications including energy storage, catalysis, adsorption, separation, and life science applications. For many of these applications, it is desirable to have a hierarchical porous structure in which there is a distinct difference between sizes of pores. Our previous study has shown that microstructure and properties of porous materials become anisotropic after sinter-forging. In particular, the small interparticle pores (intrinsic pores) orient parallel to the applied compressive stress, in contrast to large pores from pore formers (extrinsic), which orient perpendicular to the applied stress. However, the pore size, for transition from extrinsic to intrinsic behavior, (transient pore size) has not been quantified. In this study, we report on the effect of applied stresses during sinter-forging on the morphology (shape and size) of pores of different size. Based on these results, we propose a two-step approach to predict transient pore size for hierarchically porous ceramics. We use this approach to quantify the effect of applied stresses on the transient pore size. Finally, we postulate that the stress dependence of the transient pore size may be related to sintering stress—a fundamental quantity in continuum models of sintering. In addition, it can be used to calculate the effective surface energy of complex sintering systems.  相似文献   

15.
The particle size distribution of a commercial Mg-doped hydroxyapatite powder was tailored through two different milling procedures, carried out under wet or dry conditions. Wet milling gave rise to finer particles, with a narrower size distribution. Tailoring the particles size was the key to produce homogeneous gelcast green bodies, as well as fully dense and fine microstructures. In fact, wet-milled samples achieved full densification and compressive strength of about 300 MPa, five times higher than the values achieved by the dry milled samples. During the calcination treatments, HA progressively decomposed into β- and α-TCP phases, promoted by the progressive Mg2+ substitution inside the HA and β-TCP lattices. As a result, a biphasic (HA/β-TCP) calcium phosphate ceramic was successfully obtained. Gelcast macroporous materials were prepared by direct foaming, starting from both milled powders. Highly porous samples (73%-77% porosity) with a high degree of interconnectivity within pores were successfully produced. However, dry milled-foamed materials were characterized by a significant residual porosity within the struts, whereas in wet-milled foams struts and pore windows were highly compact, the key to provide sufficient mechanical strength to such highly porous open-cell foams, thus suggesting a possible use as implantable scaffolds.  相似文献   

16.
Ceramic structures have attracted extensive attention due to their excellent high temperature properties, low density and function application after structural design. Herein, six different ceramic lattices based on struts and triply periodic minimal surfaces (TPMS) sheet lattices were designed and fabricated by digital light processing (DLP) using polymer precursor. The effects of unit cell size, relative density and other parameters on the compressive and shear properties of the structure were studied in detail. A structure optimized from Gyroid was put forward, which realized excellent mechanical properties under 15% low relative density (0.25 g/cm3). Results also suggested that the TPMS sheet lattices were more suitable for bearing under low relative density and the struts-based lattices were more sensitive to the parameters change, 20% is an important node where the mechanical properties of the structure decline significantly. Design of the structure in the loading direction can effectively improve the mechanical properties. This study provides a new basis for structural design under low relative density, which will aid in the further improvement of traditional structures and the development of the application of ceramic materials in mechanical structures.  相似文献   

17.
A new mini‐deposition system (MDS) was developed to fabricate scaffolds with interconnected pore structures and anatomical geometry for bone tissue engineering. Polycaprolactone/hydroxyapatite (PCL/HA) composites with varying hydroxyapatite (HA) content were adopted to manufacture scaffolds by using MDS with a porosity of 54.6%, a pore size of 716 μm in the xy plane, and 116 μm in the z direction. The water uptake ratio and compressive modulus of PCL/HA composite scaffold increase from 8 to 39% and from 26.5 to 49.8 MPa, respectively, as the HA content increases from 0 to 40%. PCL/HA composite scaffolds have better wettability and mechanical properties than pure PCL scaffold. A PCL/HA composite scaffold for mandible bone repair was successfully fabricated with both interconnected pore structures and anatomical shape to demonstrate the versatility of MDS. POLYM. ENG. SCI., 2012. © 2012 Society of Plastics Engineers  相似文献   

18.
A novel method for the fabrication of porous poly(L -lactide-co-glycolide) (PLGA) scaffolds by combining thermally induced phase separation and porogen leaching is presented in this article. Big pores with about 75–400 μm diameters in the obtained scaffolds were generated by the porogen, sucrose particles, while small pores with diameters less than 20 μm induced via phase separation. Extraction of the solvent, chloroform by ethanol at cool temperatures could reduce the scaffold toxicity. Effects of PLGA concentration, freezing temperature, volume fraction of porogen, and introduction of β-tricalcium phosphate (β-TCP) on morphology, porosity, and compressive properties of the scaffolds were systematically discussed. Results showed that the size of small pores decreased by decreasing the polymer concentration and reducing the freezing temperature, whereas the interconnectivity of the scaffolds was improved by increasing the porogen fraction. The compressive modulus and strength were significantly lowered by increasing the scaffold porosity, that is, by increasing porogen fraction, or decreasing the polymer concentration, or reducing the freezing temperature. Addition of β-TCP into the scaffolds did not influence the compressive modulus significantly but tended to decrease the compressive strength. The obtained scaffolds with diverse pore sizes would be potentially used in bone tissue engineering. © 2008 Wiley Periodicals, Inc. J Appl Polym Sci, 2008  相似文献   

19.
Porous tubular mullite supports with gradient unidirectional aligned pores were successfully fabricated by TBA-based freezing casting method. The effects of freezing temperature, solids loading and particle size distribution of mullite powders on the microstructure and properties of the supports were investigated extensively. The results show that the pore size, porosity and compressive strength of the supports can be effectively adjusted by controlling the parameters. Both the results of microstructure observations and properties testing indicate that the pore channel size increases along the freezing direction, accompanied by the changes of pore structure from homogeneous near the freezing medium to unidirectional away from the freezing medium. The pore channel size decreases significantly with increasing solids loading, decreasing freezing temperature and reducing the particle size. The porosity also decreases with increases of solids loading and freezing temperature, as well as reduces of the particle size, while the compressive strength increases.  相似文献   

20.
Porous structures consisting of a tetragonal three-dimensional mesh of interpenetrating coaxial tubes were fabricated by robocasting from hydroxyapatite (HA) inks. After sintering the structures, polycaprolactone (PCL) was infiltrated within the tubes core by injection of a polymer solution. The addition of the polymer enhanced the mechanical performance in terms of toughness over dense- and hollow-strut all-ceramic scaffolds, specially under bending stresses. PCL impregnation improved also the compressive strength over hollow-strut scaffolds —although dense-strut structures remained stronger especially in compression. Thus, this coaxial core-shell strut configuration combines the best features of each material: the necessary stiffness and excellent osteoconductivity of the bioceramic, with the high toughness and ductility of the biopolymer; and allows the fabrication of hybrid scaffolds with the interconnected macroporosity necessary for cell ingrowth. Hence, this work successfully provides a proof-of-concept of this novel strategy for the mechanical enhancement of bioceramic-based scaffolds while preserving their osteoconductive properties.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号