首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
In this work, high performance (Pb0.97La0.02)(Zr0.66Sn0.23Ti0.11)O3 polycrystalline antiferroelectric thin-film was successfully fabricated on (La0.7Sr0.3)MnO3/Al2O3(0001) substrate via a cost-effectively chemical solution method. A large recoverable energy storage density (Wre) of 46.3?J/cm3 and high efficiency (η) of 84% were realized simultaneously under an electric field of 4?MV/cm by taking full advantage of the linear dielectric response after the electric field induced antiferroelectric-ferroelectric transition. Moreover, the PLZST thin-film displayed high temperature stability. With increasing temperature from 300?K to 380?K, the Wre decreased only 1.3%. The film also exhibited good fatigue endurance up to 1?×?105 cycling under an electric field of 2.2?MV/cm. Our work underlines the importance of the interface quality between the film and the substrate and the important role of linear dielectric answer after saturation in the improvement of the energy storage density and efficiency of antiferroelectric materials.  相似文献   

2.
《Ceramics International》2019,45(13):15898-15905
Recently, the (Pb,La)(Zr,Ti)O3 antiferroelectric materials with slim-and-slanted double hysteresis loops have been widely drawn in the application of advanced pulsed power capacitors due to its low strain characteristic. In this work, the energy storage properties of (Pb0.895La0.07)(ZrxTi1-x)O3 ceramics with different Zr contents are researched thoroughly because the substitution of Ti4+ by Zr4+ can reduce the tolerance factor t, enhancing the antiferroelectricity. The polarization-electric field hysteresis loops of the PLZT ceramics become slimmer with increasing Zr content. The highest recoverable energy storage density (Wre) of 3.38 J/cm3 and ultrahigh energy efficiency (η) of 86.5% are achieved in (Pb0.895La0.07)(Zr0.9Ti0.1)O3 ceramic. The (Pb0.895La0.07)(Zr0.9Ti0.1)O3 ceramic also hold fairly thermal stability (relative variation of Wre is less than 28% over 30 °C-120 °C), excellent frequency stability (10–1000 Hz) and good fatigue endurance. These results demonstrate that the (Pb0.895La0.07)(Zr0.9Ti0.1)O3 ceramic can be a desirable material for dielectric energy storage capacitors, especially for pulse power technology.  相似文献   

3.
《Ceramics International》2020,46(1):722-730
In this work, a new core-shell structure of antiferroelectric ceramic powder (Pb0.97La0.02Zr0.85Sn0.12Ti0.03O3-PLZST) coated with linear dielectric (Al2O3) has been successfully prepared to realize high energy density through tape-casting process. According to the experimental results of electron microscope, the sol-gel derived Al2O3 layer was uniformly coated on the PLZST particles and the Al2O3 layer can be taken as the buffer layer to effectively refine the grain growth as well. Therefore, the modified PLZST particles were fine and uniform compared with the pure PLZST. It was found that the buffer layer could undertake higher electric field and the electric field applied to PLZST particles was weakened based on finite element analysis, which can avoid the premature breakdown of PLZST. And the actual measured breakdown strength was significantly enhanced from 22.2 kV/mm to 35.5 kV/mm. Correspondingly, an extremely high recoverable energy storage density of 5.3 J/cm3 was obtained for PLZST with 0.5%wt Al2O3, an 204% enhancement over the pure PLZST ceramics (2.6 J/cm3), and the corresponding efficiency was up to 88.3%. In addition, impedance spectroscopy measurement was carried out to further confirm the better insulation of the ceramic with Al2O3 buffer.  相似文献   

4.
《Ceramics International》2020,46(5):5681-5688
Energy density and fatigue resistance properties were investigated for lead-free Na0.46Bi0.46Ba0.05La0.02Zr0.03Ti0.97-xSnxO3 (for 0 ≤ x ≤ 0.15) ceramics, synthesized via solid-state reaction technique. Perovskite pseudo-cubic crystal structure was revealed for all ceramics using X-ray diffraction. Polarization and current density versus electric field were perceived and suggested the relaxor behavior with increasing composition. A high storage energy density ~1.58 J/cm3, and conversion efficiency ~71.7% at ~110 kV/cm applied field was obtained for x = 0.03 composition at room temperature. Energy storage density was revealed ~1.53 J/cm3, and efficiency ~88.6% at 110 °C with a 100 kV/cm applied field. In addition, ceramic x = 0.03 was fatigue-free from 1 to 105 cycles. Hence, the composition x = 0.03 might be applicable for high energy storage devices.  相似文献   

5.
《Ceramics International》2016,42(11):12875-12879
Pb0.94−xLa0.04Srx[(Zr0.6Sn0.4)0.84Ti0.16]O3 (x=0,0.02,0.04,0.06) antiferroelectric ceramics were fabricated via conventional solid-state reaction. The increase of Sr content enhanced the stability of antiferroelectric phase, which resulted in the rise of phase transition fields and energy density. When x=0.06, the releasable energy density was 1.52 J/cm3 and the efficiency was 93.3% under 129 kV/cm. The pulsed discharge current was also measured to evaluate the energy release properties. Under 129 kV/cm, the obtained current density could be as high as 165.5 A/cm2. The pulsed discharge energy density was 1.21 J/cm3 and 90% of that could be released in less than 200 ns. The high energy density, high efficiency and fast energy release time indicate that the obtained AFE ceramics are very promising for pulsed power capacitors.  相似文献   

6.
《Ceramics International》2016,42(11):12537-12542
The energy-storage performance and dielectric properties of tape-cast (Pb0.92Ba0.05La0.02)(Zr0.68Sn0.27Ti0.05)O3 (PBLZST) antiferroelectric (AFE) thick films with different thicknesses were systematically studied. As the thickness of the thick films increased from 40 to 80 µm, the dielectric constant and saturation polarization (Ps) of the thick films were gradually increased, while their corresponding breakdown strength (BDS) was decreased. A maximum recoverable energy-storage density of 6.8 J/cm3, companied by an efficiency of 61.2%, was achieved in the PBLZST AFE thick film with a thickness of 40 µm at room temperature. Moreover, the energy density of the PBLZST AFE thick films also displayed good thermal stability over 25–200 °C. In addition, all the samples had a low leakage current density of ~10−6 A/cm2 at room temperature. These findings demonstrated that the PBLZST thick films should be a promising candidate for applications in high energy-storage capacitors.  相似文献   

7.
Lead lanthanum zirconate stannate titanate (PbLa(ZrSnTi)O3) antiferroelectric (AFE) ceramics are widely used in dielectric capacitors due to their superior energy-storage capacity. Generally, these ceramics can be synthesized by solid-state reaction and sol-gel methods. Ceramics prepared using the sol-gel method have a purer phase than those prepared using the solid-state reaction method because the sol-gel method can avoid the segregation of Sn. However, because the commonly used raw material tin acetate is very expensive, the preparation of PbLa(ZrSnTi)O3 AFE ceramics via the sol-gel method is not cost-effective, which prevents the use of sol-gel method for manufacturing PbLa(ZrSnTi)O3 in a large scale. In this work, low-cost dibutyltin oxide instead of expensive tin acetate is used to synthesize Pb0.97La0.02(Zr0.50Sn0.45Ti0.05)O3 (PLZST) nanopowders, and single-phase powders with a perovskite structure and average grain size of 200 nm are obtained at a calcination temperature of 580°C. In addition, dense PLZST AFE ceramics with a pure perovskite structure are obtained by sintering the PLZST nanopowders at temperatures as low as 1100°C. The sintered PLZST ceramics exhibit a room-temperature recoverable energy-storage density as high as 1.93 J/cm3 with an efficiency of 75%, which varies only slightly in the temperature range of 20-120°C. The high energy-storage density (>1.9 J/cm3) over a wide temperature range illustrates that the sol-gel-derived PLZST ceramics with low-cost dibutyltin oxide are quite promising for manufacturing pulse power capacitors.  相似文献   

8.
Antiferroelectric Pb0.97La0.02(Zr0.33Sn0.55Ti0.12)O3@SiO2 (with 5% mole of SiO2) particles were synthesized by a citric acid sol-gel method. Transmission electron microscopy(TEM) results illustrated the formation of core–shell nanostructures with controllable shell thicknesses about 3–5?nm. X-ray diffraction(XRD) patterns displayed that a stable perovskite phase was preserved and no other crystallization peaks were discovered from the shell component. Scanning electron microscopy(SEM) and Energy Dispersive Spectrometer(EDS) investigations confirmed that core-shell structures were inherited from particles to ceramics after sintering. As a result, through the coating process, the breakdown strength of the ceramic increases by 95% from 12.2?kV/mm to 23.8?kV/mm and the recoverable energy density was greatly enhanced from 1.76?J/cm3 to 2.68?J/cm3. These results demonstrate a promising reaction method to enhance breakdown strength in antiferroelectrics for energy storage capacitor applications.  相似文献   

9.
Relaxor ferroelectrics are attracting an increasing interest in the application of pulse power systems due to their excellent energy storage performance. In this paper, the (1-x)(Ba0·85Ca0.15)(Zr0·1Ti0.9)O3-xBi(Mg0·5Ti0.5)O3 ((1-x)BCZT-xBMT, x ≤ 0.2) relaxor ceramics are prepared by the solid state method. The influence of BMT on the microstructure, dielectric and energy storage properties of the prepared ceramics is investigated. The XRD results show that the peak intensity of impurities (Bi2O3, TiO2 and Ba2Bi4Ti5O18) is gradually stronger than that of BCZT phase with x increasing. Meanwhile, the grain size of (1-x)BCZT-xBMT ceramics gradually increases on account of the appearance of impurities Bi2O3. Influenced by the impurities and BMT, the dielectric constant of prepared ceramics gradually decreases with x increasing. A large Wrec value of 0.65 J/cm3 with an ultrahigh η value of 97.89% is achieved at x = 0.15 due to the high breakdown strength and slim P-E hysteresis loop. Meanwhile, the η is insensitive to the electric field. The ultrahigh η leads to lesser energy loss during the charge and discharge process. It makes the 0.85BCZT-0.15BMT ceramic more attractive in the application of pulse power systems.  相似文献   

10.
11.
Environmentally friendly Na2O–BaO–Nb2O5–SiO2 glass ceramics (GCs) with different vanadium pentoxide (V2O5) contents were successfully synthesized using the conventional melt-quenching method and heat treatment. The microstructure and dielectric energy storage properties of the GCs could be related to the addition of V2O5. When 1 mol% of V2O5 was added, the activation energy of crystallization decreased from 282 to 221 kJ/mol, and the GCs had the highest energy efficiency of 95.96% and breakdown strength of 1326 kV/cm. Moreover, the GCs could also achieve an ultrafast discharge time of 14 ns and an actual discharge energy density of 0.724 J/cm3. These results indicate that these environmentally friendly GCs can be used in energy storage devices.  相似文献   

12.
Antiferroelectric lead zirconate titanate stannate (PZST) ceramics are promising materials for high-strain transducers and actuators. The degradation of the strain excited by an ac field remains largely unknown so far for this family of antiferroelectric ceramics. In this study, the bipolar electric fatigue of antiferroelectric Pb0.97La0.02(Zr0.55Sn0.33Ti0.12)O3 ceramics was investigated. Variations in the strain hysteresis loop and damage in the microstructure of the materials due to the electric cycling were monitored. Higher cycling field yielded a stronger fatigue effect. The material showed an increasingly asymmetric suppression of the strain hysteresis loop and diffuse AFE–FE phase transition with increasing cycle number. A damaged microstructure was observed on the polished surfaces of fatigued samples after acid etching. Electrochemical variations, the pinning of domains, randomly or preferentially orientated, due to the cycling are considered as the main fatigue mechanism of the material.  相似文献   

13.
《Ceramics International》2020,46(14):22575-22580
(Pb, La)(Zr, Sn, Ti)O3 (PLZST) ceramic is one of the most prospective antiferroelectric (AFE) materials for variety of functional applications including energy storage and converter. Systematic structural investigation of domain structures should be of fundamental importance for understanding the structure-property relationship in AFE ceramics. In this study, the hierarchical domain structures and modulated structures correlated to the compositional variation in (Pb0.97La0.02) (Zr0.50SnxTi0.50-x)O3 (x = 0.375, 0.45 and 0.50) were observed and investigated in details by transmission electron microscopy. The PLZST ceramics show exclusively incommensurate modulated structures (IMS) whose modulation period changed from 9.37 to 6.15 and to 4.04 with increasing of the x value. The hierarchical domain structures include, in decreasing scales, AFE domains, incommensurate domains and nanodomains. The elementary domains in PLZST ceramics are pinstriped nanodomains which were formed based on IMS configuration but by frequent modulation of IMS periodicity and formation of faults. Nanodomains accumulated and then dissociated into incommensurate domains and AFE domains successively. The presently revealed structural characteristics in antiferroelectric PLZST may stimulate future researches on the evolution of IMS-based hierarchical domains under external physical fields, e.g. thermal or electrical, and their correlation to the physical performance.  相似文献   

14.
Manipulating the critical switching field between antiferroelectric (AFE) state and ferroelectric (FE) is an important concept for tuning the energy storage performance of AFEs. As one of the lead-based AFE systems, Pb(Lu1/2Nb1/2)O3 promises high potential in the miniaturization of pulsed power capacitors, but the extremely high critical switching field and low induced saturated polarization demonstrate severe drawbacks with respect to temperature stability and flexibility. Here, A-site Ba2+ doping engineering is used to effectively reduce the critical switching field and improve the saturated polarization in BaxPb1-x(Lu1/2Nb1/2)O3 (0.01 ≤ x ≤ 0.08, abbreviated as xBa-PLN) ceramics. We found the AFE-FE phase transition can be occurred at 80ºC with a high energy storage density of 4.03 J/cm3 for Ba0.06Pb0.94(Lu1/2Nb1/2)O3 ceramic. Our results show that Ba2+ additions destroy the antiparallel structure of AFE phase, and finally reduce the critical switching field, demonstrating a potential alternative to modulate the energy storage performance of AFEs.  相似文献   

15.
《Ceramics International》2022,48(10):13862-13868
In the development of dielectric ceramic materials, the requirements of miniaturization and integration are becoming increasingly prominent. How to obtain greater capacitance in a smaller volume is one of the important pursuits. In this paper, lead-free (1-x)NaNbO3-xBi(Ni1/2Sb2/3)O3(xBNS) with high recoverable energy storage density (Wrec) and relatively high energy storage efficiency(η) were prepared by a solid state sintering method. Bi(Ni1/2Sb2/3)O3 was introduced into the Sodium niobate ceramics(NN)-based ceramics to reduce the sintering temperature and increase the maximum breakdown field strength (Eb). Finally, 0.15BNS achieved a high Eb of 460 kV/cm, Wrec of 3.7 J/cm3 and η of 77%. In addition, the sample maintained excellent stability in the frequency range of 1–120 Hz. And the 0.15BNS ceramics also exhibited high power density (PD = 36.4 MW/cm3), large current density (CD = 520.8 A/cm2) and relatively fast charge-discharge rate (t0.9 = 1050 ns). These results demonstrate the potential application value of xBNS ceramics in energy storage capacitors.  相似文献   

16.
《Ceramics International》2022,48(13):18884-18890
Dielectric polarization and breakdown strength of dielectrics generally show directly and inversely dependent upon their crystallization, respectively. Therefore, achieving the maximum energy storage density should be expected by controlling the crystallization. A serial of ferroelectric (Ba0.95, Sr0.05)(Zr0.2, Ti0.8)O3 (BSZT) thin films were prepared by the sol-gel method. Effects of annealing temperatures on the microstructure, dielectric and energy storage performance of the films were investigated. The results indicate that BSZT thin films annealed at 600 °C for 30 min demonstrate the highest recoverable energy density and efficiency (50.5 J/cm3 and 91.9%). Such superior energy storage performance is attributed to an ultrahigh electric breakdown strength (6.65 MV/cm) induced by the dense amorphous-nanocrystalline microstructure. This work creates a new way for optimizing the energy storage performance of dielectric thin films via balancing their dielectric polarization and breakdown strength at appropriate heating processing temperature.  相似文献   

17.
Ferroelectric materials are being actively explored for next‐generation solid‐state cooling technology. Even though bulk materials possess an advantage in terms of overall heat extraction capacity, their performance is limited due to low adiabatic temperature change. In this regard, the present article explores enhanced cooling capacity of bulk polycrystalline Pb0.99Nb0.02(Zr0.95Ti0.05)0.08O3 (PNZT) through external‐field mediation and coupled caloric effects. Barocaloric (BC) and electrocaloric (EC) effects were indirectly estimated using polarization versus electric field (PE) loops (under varying pressure and temperature). It was observed that under applied pressure of 325 MPa, ΔTEC could be improved from 1 K to 4.5 K. Similarly, a peak unbiased ΔTBC of 1.5 K could be enhanced to 5.3 K under an electric field of 5 MV·m?1. These figures correspond to an improvement of ~400% over the unbiased values. The results are indicative of the multicaloric cooling capacity of bulk ferroelectric materials.  相似文献   

18.
(1-x)(Pb0.97La0.02)(Zr0.5Sn0.4Ti0.1)O3-x(Na0.5Bi0.5)0.94Ba0.06TiO3 (x = 0 ∼ 0.4) ceramics have been prepared and investigated. The ceramics consist of perovskite solid solution matrix and precipitated, isolated SnO2 particle, resulting in 0–3 type composite structure. With increasing x value, the room temperature crystal structure of perovskite solid solution transforms from tetragonal to pseudocubic, therefore, the electrical property evaluates form robust antiferroelectric at x = 0, metastable antiferroelectric at x = 0.1, and then relaxor ferroelectric at x > 0.1. Moreover, the breakdown strength is enhanced due to the composite structure and reaches maximum value of 190 kV/cm at x = 0.2. Both the phase transition and enhanced breakdown strength are helpful to improve energy storage property, the x = 0.2 ceramic shows largest recoverable energy density wrec of 1.84 J/cm3, discharge efficiency η of 86.6 %. Especially, both wrec and η illustrates significantly improved thermal stability within 25−125 °C.  相似文献   

19.
《Ceramics International》2022,48(8):10789-10802
In this study, NaNbO3 (NN) was introduced into Ba(Zr0.15Ti0.85)O3 (BZT) to form a solid solution with relaxor ferroelectric characteristics. The dielectric breakdown strength (BDS) of the specimen with 6 mol.% NN reached 680 kV/cm, the corresponding recoverable energy storage density (Wrec) was 5.15 J/cm3, and the energy storage efficiency (η) was 77%. The dissolution of Na + ions at the A position and Nb5+ ions at the B position of the perovskite structure reduced the concentration of oxygen vacancies in the lattice and compensated for defects. The doped ceramics exhibited lower dielectric loss and better thermal stability: the Wrec value was 2 ± 1% J/cm3 at 30–120 °C. In particular, in the 0.02NN ceramics, a ΔT of 1.81 K was achieved at 130 kV/cm, and the operating temperature zone expanded with the increase in doping concentration. The introduction of NN resulted in BZT ceramics that possess excellent energy storage performance and electrocaloric effect properties.  相似文献   

20.
A series of (1-x)K0.5Na0.5NbO3-xBa(Zn1/3Nb2/3)O3 ((1-x)KNN-xBZN) nanostructural ceramics was successfully synthesised via solid-state reactions. These nanostructural ceramics exhibited high energy storage density compared with pure KNN ceramics. Further analysis of their dielectric/ferroelectric properties and structures revealed that the addition of BZN alloy disrupted the long-range order of the ferroelectric lattice of pure KNN and favoured the formation of ferroelectric islands and/or polar nano-regions. Consequently, the nanostructured ceramic with x = 0.05 exhibited ultrahigh energy storage density, W, of approximately 9.14 J/cm3 and recoverable energy storage density, Wrec, of approximately 4.87 J/cm3 under a fairly low applied electrical field (220 kV/cm). These values exceed the highest values ever reported for KNN-based bulk ceramics. In addition, both excellent fatigue endurance (105 cycles) and temperature stability (Δε'/ε100°C < 15 % in the range 30–390 °C) were realised with the 0.97KNN-0.03BZN ceramic. Their excellent energy storage properties render KNN-based ceramics potential candidates for application in pulsed-power systems.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号