首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 34 毫秒
1.
The high‐energy storage density reported in lead‐free AgNbO3 ceramics makes it a fascinating material for energy storage applications. The phase transition process of AgNbO3 ceramics plays an important role in its properties and dominates the temperature and electric field dependent behavior. In this work, the phase transition behavior of AgNbO3 ceramics was investigated by polarization hysteresis and dielectric tunability measurements. It is revealed that the ferrielectric (FIE) phase at room temperature possesses both ferroelectric (FE)‐like and antiferroelectric (AFE)‐like dielectric responses prior to the critical AFE‐FE transition point. A recoverable energy storage density of 2 J/cm3 was achieved at 150 kV/cm due to the AFE‐FE transition. Based on a modified Laudau phenomenological theory, the stabilities among the AFE, FE and FIE phases are discussed, laying a foundation for further optimization of the dielectric properties of AgNbO3.  相似文献   

2.
The AgNbO3 antiferroelectric (AFE) ceramics have attracted increasing attention for their high energy storage performance and environmentally friendly characters. In this work, Ag1–2xBaxNbO3 ceramics were successfully prepared by the conventional solid-state reaction method. The effect of Ba-modification on phase structure, microstructure, and electric properties was systematically investigated. The introduction of Ba2+ ion led to complex cell parameter evolution and significant refinement of grain size. Room temperature dielectric permittivity increased obviously from ~260 for the pure AgNbO3 counterpart to ~350 for those after adding a small amount of Ba element. Slim P-E hysteresis loops with improved AFE phase were achieved after Ba modification, due to the decrease of tolerance factor. A high recoverable energy density up to 2.3?J/cm3 with energy efficiency of 46% can be obtained for the composition of Ag0.96Ba0.02NbO3, in correlation with the enhanced AFE stability, reduced Pr, increased Pm and decreased ΔE. Moreover, the Ag0.96Ba0.02NbO3 ceramics also exhibited excellent temperature stability in both energy density and efficiency with small variation of <?5% over 20–120?℃. The results suggest that the electric properties of AgNbO3 system can be largely tuned after Ba modification, making it a promising candidate for energy storage applications.  相似文献   

3.
《Ceramics International》2020,46(8):12269-12274
Dielectric capacitors with high recoverable energy density are in high demand for their application in electrical and electronic systems. Among lead-free dielectric materials, silver niobate (AgNbO3) has attracted growing interest due to its superior energy storage density at room temperature. The field-induced phase transition from antiferroelectric (AFE) phase to ferroelectric (FE) phase contributes to its large energy density. In this work, pure perovskite silver niobate ceramics were fabricated in an oxygen atmosphere by the solid-state reaction technique. The Pbcm orthorhombic phase of AgNbO3 was closely observed using the Rietveld refinement method to provide explanation for the origin of high spontaneous polarization within a unit cell. Local structural analysis via piezoelectric force microscopy revealed the existence of ferroelectric nano domains, which may contribute to the high energy storage efficiency (η = 99.9926%) in AgNbO3 at low electric fields. The phase transitions of AgNbO3 were also investigated via the dependence of the dielectric permittivity (ε′ and ε″) and loss angle tangent (tanδ) on temperatures, providing insights into the further modification of AgNbO3.  相似文献   

4.
Antiferroelectric (AFE) ceramic materials possess ultrahigh energy storage density due to their unique double hysteresis characteristics, and PbZrO3 is one of the promising systems, but previous materials still suffer from the problem that energy storage density and energy storage efficiency can hardly be improved synergistically. In this work, a multiple optimization strategy is proposed to substantially improve the energy storage efficiency while maintaining the high energy storage density of PZ-based AFE ceramics. Sr2+-doped (Pb0.90La0.02Sr0.08)[(Zr0.5Sn0.5)0.9Ti0.1]0.995O3 ceramics was successfully synthesized by viscous polymer process and two-step sintering. The diffuse phase transition constructed in this ceramic depleted the threshold electric field hysteresis and current while the breakdown field strength was increased again. An ultrahigh recoverable energy density (Wrec) of 7.9 J/cm3 with a high energy storage efficiency (η) of 96.4 % are achieved synchronously at an electric field of 510 kV/cm. Moreover, the AFE ceramics possess remarkable discharge energy storage properties with a high discharge energy density (Wd) of 7.4 J/cm3 and a large power density (Pd) of 224 MW/cm3.  相似文献   

5.
(Pb0.87Ba0.1La0.02)(Zr0.68Sn0.24Ti0.08)O3 (PBLZST) antiferroelectric (AFE) ceramics have been prepared by hot‐press sintering method and conventional solid‐state reaction process, and the dependence of microstructure and energy storage properties of the ceramics on sintering approaches has been studied. The results reveal that not only the microstructure, but also the electrical properties of the PBLZST AFE ceramics are significantly improved by using the hot‐press sintering method. Samples resulting from the hot‐press sintering process have high breakdown strength of 180 kV/cm which results from the increase of density. Coupled with large polarization, the hot‐pressed AFE ceramics are shown to have a high recoverable energy density of 3.2 J/cm3. The recoverable energy density of the hot‐pressed PBLZST AFE ceramics is 100% greater than the conventional sintered specimens with recoverable energy density of 1.6 J/cm3.  相似文献   

6.
Capacitors are widely used as energy storage elements in electric vehicles (EVs) and pulsed power. At present, it is still challenging to develop capacitor dielectrics with good energy storage and discharge performance. In this work, antiferroelectric (AFE) ceramics (Pb0.94La0.04)[(Zr0.6Sn0.4)0.92Ti0.08]O3 with enhanced antiferroelectricity were fabricated by a rolling process. The obtained ceramics have a high recoverable energy density of 5.2 J/cm3 and an extremely high efficiency of 91.2% at 327 kV/cm. The ceramics have good energy storage and discharge performance in the temperature range from −40°C to 100°C due to the existence of AFE phase. An energy density of 3.7 J/cm3 can be released at 200 kV/cm in less than 500 ns and the discharge current keeps stable after 1000 charge-discharge cycles. By direct short experiment, a current density of 1657 A/cm2, which is the highest result in recently developed AFE ceramics, and a power density of 228 MW/cm3 were achieved. The possibility of using AFEs at low temperature was confirmed. The excellent energy storage and discharge performance prove the great potential of the obtained ceramics in high energy and power density applications.  相似文献   

7.
The applications of silver niobate (AgNbO3)-based antiferroelectric (AFE) ceramics for potential energy storage are limited by the introduction of oxygen vacancies (OVs). The inevitable OVs narrow the band gap and promote grain growth, resulting in poor breakdown strength and low recoverable energy density (Wrec). Here, we report a significant energy density performance of (Ag1–2xSrx)(Nb0.78Ta0.22)O3 AFE ceramics designed by restraining OVs. Electron paramagnetic resonance (EPR) and UVvis absorption spectra experiments demonstrate that the OV content gradually decreases and the band gap increases with increasing Sr content. Donor doping of Sr leads to the generation of silver ion vacancies, thus, the OV concentration decreases to maintain the electrical neutrality of the system. As a result, a high Wrec of ∼5.6 J/cm3 together with an energy efficiency of 70.1% at 300 kV/cm is achieved in the (Ag0.92Sr0.04)(Nb0.78Ta0.22)O3 ceramic. This work offers a novel strategy for improving the energy storage properties of AgNbO3-based AFE ceramics.  相似文献   

8.
(Pb0.98La0.02)(Zr0.45Sn0.55)0.995O3 antiferroelectric (AFE) thick films with a thickness of about 85 μm were successfully fabricated via a rolling process using an improved sintering method, and all specimens showed high‐energy‐storage performance. The X‐ray diffraction, SEM pictures, and hysteresis loops confirmed that the sintering temperature had an important influence on the microstructures, dielectric properties and energy storage performance of AFE thick films. The grain size and the storage efficiency increased with the increasing sintering temperature, the energy storage performance was enlarged by the rolling process. As a result, a maximum recoverable energy density of 7.09 J/cm3 with an efficiency of 88% was achieved at room temperature, together with stable energy‐storage behavior, which was almost three times higher than that (2.43 J/cm3) of the bulk ceramics counterparts. The results demonstrated that the improved method was an effective way to improve the breakdown strength and energy storage performance of AFE thick films, and (Pb0.98La0.02)(Zr0.45Sn0.55)0.995O3 AFE thick films were a promising material for high‐power energy storage.  相似文献   

9.
AgNbO3 as a lead-free antiferroelectric material, has received widespread attention in recent years due to its promising application in the aspects of energy storage devices. However, the high remnant polarization and low breakdown strength limits its energy storage properties. In this work, Nd3+-doped AgNbO3 (Ag1−3xNdxNbO3, x=0−0.015) ceramics were prepared and a two-step sintering method was employed. The introduction of Nd3+ leads to the enhanced stability of the antiferroelectric phase, refined grain size and increased resistivity. Furthermore, by adjusting the pre-heating temperature in the two-step sintering, the homogeneity of microstructure is improved and the resistance of pre-heated samples increases by one order of magnitude compared with normally sintered samples, leading to the enhanced breakdown strength. Ag0.97Nd0.01NbO3 pre-heated at 1100 °C for 2 h exhibits promising energy storage properties, with a recoverable energy storage density of 3.2 J/cm3 and energy efficiency of 52 % under an applied electric field of 210 kV/cm.  相似文献   

10.
Lead-based antiferroelectric (AFE) ceramics have attracted increasing interest in pulse power systems owing to their high-energy storage and power densities. However, the single AFE–ferroelectric (FE) phase transition in conventional AFE materials usually leads to premature polarization saturation and low breakdown strength, which are disadvantageous to energy storage performance. In this study, high energy storage performance was achieved in Pb0.94−xLa0.04Cax[Nb0.02(Zr0.99Ti0.01)0.975]O3 (PLCNZT) AFE ceramics by constructing electric-field-induced multiple phase transitions. A maximum recoverable energy storage density of 12.15 J/cm3 and a high energy efficiency of 85.4% were obtained for the PLCNZT ceramic with x = 0.03 at 420 kV/cm. These excellent properties are attributed to the AFE–FE Ⅰ-FE Ⅱ multiple phase transitions induced by Ca2+ doping, which effectively enhances the breakdown strength. This result indicates that field-induced multiple phase transitions significantly improve the energy storage of AFE materials.  相似文献   

11.
AgNbO3-based ceramics have been the spotlight for the lead-free dielectric capacitors due to its unique antiferroelectric feature and the ever-increasing environmental concerns. Herein, synergic modulation on the energy storage properties of AgNbO3-based ceramics was reported, in which the over-stoichiometrical introduction of only 0.10 wt% MnO2 at the atomic-scale leads to reduced leakage current, Pr and enhanced antiferroelectric stability while the SiO2 coating on the AgNbO3 particles at the micro-scale greatly inhibits the grain growth, increases the breakdown strength and the electric filed inducing the AFE-FE transitions. As a result, a large recoverable energy density up to 3.34 J/cm3 with efficiency of 60.0% was obtained in 0.10 wt% MnO2-doped AgNbO3@SiO2 ceramic, which is 2.3 times larger than that of the pristine AgNbO3. This work provides a rational approach to synergically modulate the energy storage properties.  相似文献   

12.
Ca and Ta co-doped AgNbO3 antiferroelectric lead-free ceramics were fabricated by rolling process technique, and improved energy storage properties were obtained. X-ray diffraction and Raman spectra indicate a single perovskite structure for (Ag1-2xCax)(Nb1-xTax)O3 ceramics. The dielectric performances were also investigated, showing that increasing the content of Ca and Ta from 0.1 to 5 mol% gradually decreased the temperatures of the phase transition of monoclinic M1-M2 and M2-M3. This proved the enhanced antiferroelectricity stability associated with the enlarged low temperature phase transition region. The obtained (Ag0.90Ca0.05)(Nb0.95Ta0.05)O3 ceramics exhibit an enhanced recoverable energy storage density (3.36 J/cm3) and efficiency (58.3%) with good temperature and frequency stability. The same composition shows excellent charge and discharge properties with a discharge current as high as 91.5 A and fast discharge speed (150 ns discharge period). All these merits demonstrate that AgNbO3-based antiferroelectric ceramics are competitive with other lead-based and lead-free dielectric capacitors, which are promising candidates for dielectric energy storage applications.  相似文献   

13.
Lead-free (0.70-x)BiFeO3-0.30BaTiO3-xAgNbO3+5‰mol CuO (abbreviated as BF-BT-xAN) ceramics were fabricated using a modified thermal quenching technique. BF-BT-xAN ceramics are of a perovskite structure with morphotropic phase boundary (MPB) and show strong relaxor properties. Remarkably, the high recoverable energy storage density of 2.11 J/cm3 is obtained for BF-BT-xAN with x = 0.14. For the x = 0.14 ceramics, its energy storage efficiency is as high as 84 % at relative low field of 195 kV/cm, together with an outstanding thermal stability in a broad temperature range from 25 °C to 150 °C. In addition, this ceramic maintains superior energy storage performance even after 8 × 104 electrical cycles due to its high densification after doping Ag2O and Nb2O5. The result suggests that lead-free BF-BT-xAN ceramics may be promising candidate for dielectric energy storage application.  相似文献   

14.
Antiferroelectric (AFE) materials have superior energy storage properties in high power multilayer ceramic capacitors (MLCCs). To adapt to the sintering temperature of inner metal electrodes with less palladium content, in this work, Al2O3 was added to Pb0.95La0.02Sr0.02(Zr0.50Sn0.40Ti0.10)O3 (PLSZST) AFE ceramics, in an attempt to reduce the sintering temperature. Results of this study demonstrate that the optimal composition of PLSZST-0.8 wt% Al2O3 sintered at a lower temperature 1040 ℃, has a high recoverable energy density (Wre, 3.23 J/cm3) and a high efficiency (η, 90 %) at room temperature. It is also high in pulse discharge energy density (Wdis, 2.45 J/cm3), current density (1369 A/cm2), and has an extremely short period of discharge (less than 500 ns). In addition, both Wre and η demonstrate a good stability in temperature within a wide range of 30 ℃-100 ℃. In sum, this novel AFE composition has great potentials for energy storage applications such as high energy density MLCCs.  相似文献   

15.
In this work, 0.2 wt.% Mn-doped (1-x)AgNbO3-xBi0.5Na0.5TiO3 (x = 0.00–0.04) ceramics were synthesized via solid state reaction method in flowing oxygen. The evolution of microstructure, phase transition and energy storage properties were investigated to evaluate the potential as high energy storage capacitors. Relaxor ferroelectric Bi0.5Na0.5TiO3 was introduced to stabilize the antiferroelectric state through modulating the M1-M2 phase transition. Enhanced energy storage performance was achieved for the 3 mol% Bi0.5Na0.5TiO3 doped AgNbO3 ceramic with high recoverable energy density of 3.4 J/cm3 and energy efficiency of 62% under an applied field of 220 kV/cm. The improved energy storage performance can be attributed to the stabilized antiferroelectricity and decreased electrical hysteresis ΔE. In addition, the ceramics also displayed excellent thermal stability with low energy density variation (<6%) over a wide temperature range of 20−80 °C. These results indicate that Mn-doped (1-x)AgNbO3-xBi0.5Na0.5TiO3 ceramics are highly efficient lead-free antiferroelectric materials for potential application in high energy storage capacitors.  相似文献   

16.
Silver niobate based lead-free antiferroelectric ceramics have demonstrated great advantages, but the high consumption of noble metal silver may restrict their commercial application. In this work, Na+ and Ta5+ co-modified (Ag1-xNax)(Nb1-yTay)O3 (100xNa-100yTa) ceramics were investigated, aiming to reduce the silver consumption and achieve good energy storage properties. The Na+ tended to increase M2-M3 phase transition temperature (TM2-M3), while Ta5+ was more likely to reduce TM2-M3. A new current peak (ER) was observed for the first time in all current-electric field curves. As expected, a room temperature M2-M3 phase boundary with relaxor AFE property was realized in 40Na-65Ta with obviously reduced silver content, in which high recoverable energy storage density (Wrec) of 6.5 J/cm3 and good energy storage efficiency (η) of 78% were achieved. This work demonstrates a strategy to realize relaxor antiferroelectrics in AgNbO3 based ceramics for energy storage performance, and promotes the commercialization potential.  相似文献   

17.
(Pb, La)(Zr, Ti)O3 antiferroelectric (AFE) materials are promising materials due to their energy-storage density higher than 10 J cm−3, but their low energy-storage efficiency and poor temperature stability limit their application. In this paper, the (1 − x)(Pb0.9175La0.055)(Zr0.975Ti0.025)O3xPb(Yb1/2Nb1/2)O3 (PLZTYN100x) AFE ceramics were prepared via two-step sintering method and investigated thoroughly. With the doping of Yb3+ and Nb5+, the phase structure transforms from the orthorhombic phase (AFEO) to the coexistence of the orthorhombic-and-tetragonal phases. This structure reduces the free energy difference between the AFE and ferroelectric phases and reduces the fluctuation of energy with temperature, improving the energy storage efficiency and temperature stability. When the x = 0.05 (PLZTYN5), the AFE ceramic exhibits excellent temperature stability and ultrahigh energy storage performance, whose recoverable energy density (Wrec) is 6.8–8.2 J cm−3 at 30 kV mm−1 in the temperature range from −55 to 75°C, and efficiency (ƞ) is 78%–86.7%. In addition, the change of Wrec is less than 15%, exceeding the performance of most AFE ceramics. The results demonstrate that the PLZTYN5 ceramic has great potential in pulse power capacitors.  相似文献   

18.
《Ceramics International》2022,48(22):32613-32627
AgNbO3 has broad research prospects in dielectric energy storage due to its unique antiferroelectric properties. The enhancement of ferroelectric/antiferroelectric phase stability can be achieved by tuning the tolerance factor t of AgNbO3-based ceramics. On the other hand, the stability of the antiferroelectric and ferroelectric phases can be improved by adjusting the phase transition temperature of AgNbO3-based ceramics. This is of great significance and value to the research and development of lead-free energy storage materials. Although there have been many studies on the energy storage performance of AgNbO3-based ceramic materials, there are still challenges in achieving high energy storage density and energy efficiency at the same time. This review discusses the optimization strategy, preparation technology, and sintering technology of AgNbO3-based ceramics, summarizes the current research progress and obstacles, and puts forward the development direction for the application of AgNbO3-based ceramics.  相似文献   

19.
《Ceramics International》2020,46(10):15907-15914
Bismuth layer-structured BaBi2Nb2O9 (BBN) and BaBi2Ta2O9 (BBT) relaxor ferroelectric ceramics were explored as potential energy storage materials. Remarkable energy storage performances were obtained in both BBN and BBT ceramics, featured by large recoverable energy storage density (~0.84 J/cm3 and ~0.68 J/cm3) and high energy storage efficiency (~90% and ~94%), respectively. Furthermore, both the two ceramics exhibit good thermal and frequency stabilities. Delightedly, both the BBN and BBT ceramics can complete the discharge process within 0.15 μs, resulting in ultrahigh current density of 195 A/cm2 and 234 A/cm2 and excellent power density of 10.74 MW/cm3 and 12.89 MW/cm3, respectively. The obtained results suggest that BaBi2Nb2O9 and BaBi2Ta2O9 ceramics could have a promising future in energy storage applications. This study also demonstrates that the bismuth layer-structured relaxor ferroelectric ceramic can be considered as a novel potential lead-free energy storage materials, in addition to the widely studied pervoskite-structured relaxor ferroelectric ceramics.  相似文献   

20.
Energy storage capacitors with high recoverable energy density and efficiency are greatly desired in pulse power system. In this study, the energy density and efficiency were enhanced in Mn-modified (Pb0.93Ba0.04La0.02)(Zr0.65Sn0.3Ti0.05)O3 antiferroelectric ceramics via a conventional solid-state reaction process. The improvement was attributed to the change in the antiferroelectric-to-ferroelectric phase transition electric field (EF) and the ferroelectric-to-antiferroelectric phase transition electric field (EA) with a small Mn addition. Mn ions as acceptors, which gave rise to the structure variation, significantly influenced the microstructures, dielectric properties and energy storage performance of the antiferroelectric ceramics. A maximum recoverable energy density of 2.64 J/cm3 with an efficiency of 73% was achieved when x = 0.005, which was 40% higher than that (1.84 J/cm3, 68%) of the pure ceramic counterparts. The results demonstrate that the acceptor modification is an effective way to improve the energy storage density and efficiency of antiferroelectric ceramics by inducing a structure variation and the (Pb0.93Ba0.04La0.02)(Zr0.65Sn0.3Ti0.05)O3-xMn2O3 antiferroelectric ceramics are a promising energy storage material with high-power density.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号