首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到10条相似文献,搜索用时 31 毫秒
1.
综述了制约锂硫电池循环性能的因素和正极、负极、电解质对锂硫电池循环性能改善的影响.介绍了制约锂硫电池循环性能的主要因素:不可逆硫化锂的形成、硫正极多孔结构的失效和电解液组分与锂负极的副反应.分别介绍了改善锂硫电池循环性能的途径:合适的黏合剂、碳材料、正极制备工艺,锂负极保护技术,合理组分的电解质,电池结构与设计.并在此...  相似文献   

2.
锂硫电池因自身所含硫元素储量丰富、价格低廉、理论比容量高等优势,逐渐被科研工作者所关注。然而,锂硫电池所采用的液态有机电解液普遍存在挥发,漏液,燃烧等潜在安全隐患,因此,我们通过原位聚合制备出一种固态聚合物电解质来提升锂硫电池安全性能,同时还可以兼顾锂硫电池的循环稳定性。实验结果表明:以聚乙二醇甲醚丙烯酸酯(PDEM)为基体的固态聚合物电解质应用于硫化聚丙烯腈(PAN-S)/锂金属电池具有良好的长循环性能,说明该固态聚合物电解质与正负极具有良好的界面相容性。  相似文献   

3.
综述了锂/钠离子硫系玻璃或玻璃陶瓷电解质材料的最新研究进展,总结了基于硫系玻璃电解质材料的全固态电池应用中存在的与电极材料界面稳定性、固–固界面接触性以及锂穿刺等关键技术问题,并展望了新型硫系玻璃/玻璃陶瓷电解质材料关键技术研发策略和全固态电池应用探索的发展方向。  相似文献   

4.
<正>锂硫电池的蓄电量是目前最好的锂离子电池的4~5倍,但是在锂硫电池的商业化之路上存在很大的现实障碍。最近,研究人员证明,硫基聚合物可能是质轻、价廉、电容大的电池的有效解决方案。锂硫电池实用性不够强是因为其寿命较短。"锂电池可以持续充放电1 000多次,而锂硫电池充放电循环还不到100次其寿命就到了尽头。"亚利桑那州立大学化学家Jeffrey Pyun如是说。锂硫电池中,硫元素在负极与电解质中的锂离子发生反应,生成锂硫盐并最终沉积在电极上。这些副反应消耗负极的硫,从而降低了电池的存储容量并造成了电池的结构问题。据Pyun介绍,几个研究小组利用纳米材料捕获金属元素以防  相似文献   

5.
吴莹莹 《云南化工》2019,(7):142-143
从凝胶聚合物电解质的制备方法 (原位聚合法和溶液浇铸法)出发,对锂硫电池中凝胶聚合物电解质的应用展开了探究。  相似文献   

6.
固体电解质是电解质材料的一个重要种类,利用固体电解质组装全固态电池是解决锂离子电池安全性差,能量密度低等问题的有效方法。围绕着几类重要的无机晶态固体电解质,包括:钙钛矿型、钠快离子导体型(NASICON)、锂快离子导体型(LISICON)、硫代–锂快离子导体型(thio-LISICON)、石榴石型,对晶体结构、合成工艺及其与电极材料匹配性能的研究进展进行综述,并着重讨论了无机晶态固体电解质应用于锂离子电池的导电机理以及提高离子电导率的原则与方法。  相似文献   

7.
韩建军 《河南化工》2020,37(1):10-13
硫化锂作为新型高能量、高安全性能的固态锂离子电池最重要组成部分,也是固态硫化物电解质的制备原料及高容量锂硫电池的正极材料,其生产工艺开发优化及商业化应用日益受到普遍的关注和重视。本文围绕硫化锂的几种制备工艺及研究现状展开论述,并对各工艺的优缺点进行了评价。  相似文献   

8.
锂硫电池由于其高理论能量密度(2600W?h/kg)而受到了广泛的关注,是极具应用前景的电池体系。硫基正极材料作为锂硫电池的重要组成部分,是提高电池性能的关键。然而锂硫电池还存在一些问题,如硫的利用率低及正极结构的稳定性差等。本文综述了近几年锂硫电池硫正极复合材料的研究现状,分别从硫/碳复合、硫/导电聚合物复合、硫/氧化物复合3个方面进行介绍,指出了未来锂硫电池正极材料要注意结合硫/导电聚合物及硫/氧化物的优势并注重材料结构的设计,向核壳或类核壳结构方向发展的趋势,同时还要提高载硫量,提高循环稳定性,以获得高性能的锂硫电池。  相似文献   

9.
锂硫电池理论能量密度高(2 600 W·h/kg)、硫原料丰富、成本低,是最有发展前景的锂二次电池技术之一。然而硫以及放电产物硫化锂电导率低,电化学反应过程中生成的可溶性多硫化物的"穿梭效应"以及电池充放电过程中电极的体积效应等,影响了锂硫电池性能的发挥,阻碍了锂硫电池实用化进程。近年来,通过电极材料的设计、电极表界面的修饰以及电解液体系优化,锂硫电池的性能得到显著提升。综述了近年来锂硫电池中硫正极、隔膜和金属Li表界面修饰方面的研究进展。  相似文献   

10.
设计并制备了一种使用LAGP陶瓷作为隔膜的锂硫电池,并进行了电化学测试。比较了使用普通Celgard隔膜电池与使用陶瓷隔膜电池充放电性能的不同。结果表明,使用陶瓷隔膜的锂硫电池充放电效率维持在100%,但电池极化现象严重。从理论角度分析了导致陶瓷隔膜锂硫电池与Celgard隔膜锂硫电池充放电性能不同的原因。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号