首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 343 毫秒
1.
Most fungal secondary metabolism genes are poorly expressed under laboratory conditions. Nectriapyrones are known as secondary metabolites produced mainly by symbiotic fungi, including endophytes and plant pathogens. Herein, we show the induction of nectriapyrone production in the rice blast fungus Pyricularia oryzae. The two-component signal transduction system was disturbed by disrupting OSM1 and PoYPD1, which encoded a HOG MAP kinase and a His-containing phosphotransfer (HPt) protein, respectively. This induced the production of two polyketide compounds: nectriapyrone and its hydroxylated analogue. The nectriapyrone biosynthetic gene cluster consists of a polyketide synthase gene (NEC1) and an O-methyltransferase gene (NEC2). Overexpression of the two genes induced overproduction of nectriapyrone and five nectriapyrone analogues, including a new derivative. Nectriapyrone production was not required for the infection of rice. The structure of nectriapyrone is similar to that of the germicidins produced by Streptomyces spp., and nectriapyrone inhibited the growth of Streptomyces griseus.  相似文献   

2.
3.
Fungal LysM effector proteins can dampen plant host–defence responses, protecting hyphae from plant chitinases, but little is known on these effectors from nonpathogenic fungal endophytes. We found four putative LysM effectors in the genome of the endophytic nematophagous fungus Pochonia chlamydosporia (Pc123). All four genes encoding putative LysM effectors are expressed constitutively by the fungus. Additionally, the gene encoding Lys1—the smallest one—is the most expressed in banana roots colonised by the fungus. Pc123 Lys1, 2 and 4 display high homology with those of other strains of the fungus and phylogenetically close entomopathogenic fungi. However, Pc123 Lys3 displays low homology with other fungi, but some similarities are found in saprophytes. This suggests evolutionary divergence in Pc123 LysM effectors. Additionally, molecular docking shows that the NAcGl binding sites of Pc123 Lys 2, 3 and 4 are adjacent to an alpha helix. Putative LysM effectors from fungal endophytes, such as Pc123, differ from those of plant pathogenic fungi. LysM motifs from endophytic fungi show clear conservation of cysteines in Positions 13, 51 and 63, unlike those of plant pathogens. LysM effectors could therefore be associated with the lifestyle of a fungus and give us a clue of how organisms could behave in different environments.  相似文献   

4.
Filamentous fungi are known producers of important secondary metabolites. In spite of this, the majority of these organisms have not been studied at the genome level, leaving many of the bioactive molecules they produce undiscovered. In this study, we explore the secondary metabolite potential of an understudied fungus, Hyphodiscus hymeniophilus. By sequencing and assembling the first genome from this genus, we show that this fungus has genes for at least 20 natural products and that many of these products are likely novel. One of these metabolites is identified: a new, red-pigmented member of the azaphilone class, hyphodiscorubrin. We show that this metabolite is only produced when the fungus is grown in the light. Furthermore, the biosynthetic gene cluster of hyphodiscorubrin is identified though homology to other known azaphilone producing clusters.  相似文献   

5.
Genomic DNA from the insect pathogenic fungus Beauveria bassiana was used as a template in a PCR with degenerate primers designed to amplify a fragment of a C-methyl transferase (CMeT) domain from a highly reduced fungal polyketide synthase (PKS). The resulting 270-bp PCR product was homologous to other fungal PKS CMeT domains and was used as a probe to isolate a 7.3-kb fragment of genomic DNA from a BamH1 library. Further library probing and TAIL-PCR then gave a 21.9-kb contig that encoded a 12.9-kb fused type I PKS-NRPS ORF together with ORFs encoding other oxidative and reductive enzymes. A directed knockout experiment with a BaR cassette, reported for the first time in B. bassiana, identified the PKS-NRPS as being involved in the biosynthesis of the 2-pyridone tenellin. Other fungal PKS-NRPS genes are known to be involved in the formation of tetramic acids in fungi, and it thus appears likely that related compounds are precursors of 2-pyridones in fungi. B. bassiana tenellin KO and WT strains proved to be equally pathogenic towards insect larvae; this indicated that tenellin is not involved in insect pathogenesis.  相似文献   

6.
7.
海洋放线菌Y-0117农用活性代谢产物的研究   总被引:1,自引:0,他引:1  
在农用抗生素筛选中发现代号为Y-0117的海洋放线茵菌株所产生的代谢产物对植物病原真菌具有良好的抑制作用。对Y-0117发酵液进行萃取、硅胶柱层析、制备薄层色谱、制备HPLC,分离纯化得到两个活性组分0117A和0117B。通过紫外光谱、质谱、核磁共振等手段,确定0117A的分子式为C35H58O8,分子量为604。结构与已知化合物Bafilomycin D相同;0117 B的分子式为C42H60O12.分子量为756,结构与近期发现具有抗癌活性的已知化合物Hygrobafilomycin相同。研究发现0117B对多种植物病原真菌具有良好的抑制活性,对稻瘟病菌的最小抑制浓度为15.63μg·mL^-1。  相似文献   

8.
A central component in understanding plant–enemy interactions is to determine whether plant enemies, such as herbivores and pathogens, mediate the evolution of plant secondary metabolites. Using 26 populations of a broadly distributed plant species, sagebrush (Artemisia tridentata), we examined whether sagebrush populations in habitats with a greater prevalence of fungi contained antifungal secondary metabolites on leaf surfaces that were more active and diverse than sagebrush populations in habitats less favorable to fungi. Because moisture and temperature play a key role in the epidemiology of most plant–pathogen interactions, we also examined the relationship between the antifungal activity of secondary metabolites and the climate of a site. We evaluated the antifungal activity of sagebrush secondary metabolites against two fungi, a wild Penicillium sp. and a laboratory yeast, Saccharomyces cerevisiae, using a filter-paper disk assay and bioautography. Comparing the 26 sagebrush populations, we found that fungal abundance was a good predictor of both the activity (r 2 = 0.36 for Saccharomyces, r 2 = 0.37 for Penicillium) and number (r 2 = 0.34 for Saccharomyces) of antifungal secondary metabolites. This suggests that selection imposed by fungal pathogens has led to more effective antifungal secondary metabolites. We found that the antifungal activity of sagebrush secondary metabolites was negatively related to average vapor pressure deficit of the habitat (r 2 = 0.60 for Saccharomyces, r 2 = 0.61 for Penicillium). Differences in antifungal activity among populations were not due to the amount of secondary metabolites, but rather to qualitative differences in the composition of antifungal compounds. Although all populations in habitats with high fungal prevalence had secondary metabolites with high antifungal activity, different suites of compounds were responsible for this activity, suggesting independent outcomes of selection on plants by fungal pathogens. The location of antifungal secondary metabolites on the leaf surface is consistent with their putative defense role, and we found no evidence supporting other functions, such as protection from ultraviolet light or oxidation. That the antifungal activity of sagebrush secondary metabolites was similar for two different fungi provides support for broad antifungal defenses. The incidence and severity of fungal disease in the field (caused by Puccinia tanaceti) were similar in moist and dry habitats, possibly reflecting an equilibrium between plant defense and fungal attack, as sites with greater fungal abundance compensated with more effective secondary metabolites. The geographic correlation between fungal abundance and antifungal secondary metabolites of sagebrush, coupled with our other data showing heritable variation in these metabolites, suggests that pathogenic fungi have selected for antifungal secondary metabolites in sagebrush.  相似文献   

9.
Secondary metabolites produced by endophytic microorganisms can provide benefits to host plants, such as stimulating growth and enhancing the plant’s resistance toward biotic and abiotic factors. During its life, a host plant may be inhabited by many species of endophytes within a restrictive environment. This condition can stimulate secondary metabolite production that improves microbial competition and may consequently affect both the neighboring microorganisms and the host plant. The interactions between the endophytes that co-habit the same host plant have been studied. However, the effect of these interactions on the host plant has remained neglected. When using mixed microbial cultures, we found that the endophytic fungus Alternaria tenuissima significantly increased the production of some polyketides, including antifungal stemphyperylenol in response to the endophytic Nigrospora sphaerica. Biological activity assays revealed that stemphyperylenol can cause cytotoxic effects against N. sphaerica, although no phytotoxicity was observed in the host plant Smallanthus sonchifolius, even at concentrations much higher than those toxic to the fungus. The polyketides produced by A. tenuissima may be important for the ecological relationships between endophyte-endophyte and endophytes-host plants in the natural environment.  相似文献   

10.
Natural product discovery has traditionally relied on the isolation of small molecules from producing species, but genome-sequencing technology and advances in molecular biology techniques have expanded efforts to a wider array of organisms. Protists represent an underexplored kingdom for specialized metabolite searches despite bioinformatic analysis that suggests they harbor distinct biologically active small molecules. Specifically, pathogenic apicomplexan parasites, responsible for billions of global infections, have been found to possess multiple biosynthetic gene clusters, which hints at their capacity to produce polyketide metabolites. Biochemical studies have revealed unique features of apicomplexan polyketide synthases, but to date, the identity and function of the polyketides synthesized by these megaenzymes remains unknown. Herein, we discuss the potential for specialized metabolite production in protists and the possible evolution of polyketide biosynthetic gene clusters in apicomplexan parasites. We then focus on a polyketide synthase from the apicomplexan Toxoplasma gondii to discuss the unique domain architecture and properties of these proteins when compared to previously characterized systems, and further speculate on the possible functions for polyketides in these pathogenic parasites.  相似文献   

11.
Anthocyanins are a group of common phenolic compounds in plants. They are mainly detected in flowers and fruits, are believed to play different important roles such as in the attraction of animals and seed dispersal, and also in the increase of the antioxidant response in tissues directly or indirectly affected by biotic or abiotic stress factors. As a major group of secondary metabolites in plants commonly consumed as food, they are of importance in both the food industry and human nutrition. It is known that arbuscular mycorrhizal (AM) fungi can influence the plant secondary metabolic pathways such as the synthesis of essential oils in aromatic plants, of secondary metabolites in roots, and increase flavonoid concentration. Plant Growth-Promoting Bacteria (PGPB) are able to increase plant growth, improving plant nutrition and supporting plant development under natural or stressed conditions. Various studies confirmed that a number of bacterial species living on and inside the root system are beneficial for plant growth, yield and crop quality. In this work it is shown that inoculation with AM fungi and/or with selected and tested Pseudomonas strains, under conditions of reduced fertilization, increases anthocyanin concentration in the fruits of strawberry.  相似文献   

12.
Biosynthesis of antimicrobial secondary metabolites in response to microbial infection is one of the features of the plant immune system. Particular classes of plant secondary metabolites involved in plant defence are often produced only by species belonging to certain phylogenetic clades. Brassicaceae plants have evolved the ability to synthesise a wide range of sulfur-containing secondary metabolites, including glucosinolates and indole-type phytoalexins. A subset of these compounds is produced by the model plant Arabidopsis thaliana. Genetic tools available for this species enabled verification of immune functions of glucosinolates and camalexin (A. thaliana phytoalexin), as well as characterisation of their respective biosynthetic pathways. Current knowledge of the biosynthesis of Brassicaceae sulfur-containing metabolites suggests that the key event in the evolution of these compounds is the acquisition of biochemical mechanisms originating from detoxification pathways into secondary metabolite biosynthesis. Moreover, it is likely that glucosinolates and Brassicaceae phytoalexins, traditionally considered as separate groups of compounds, have a common evolutionary origin and are interconnected on the biosynthetic level. This suggests that the diversity of Brassicaceae sulfur-containing phytochemicals reflect phylogenetic clade-specific branches of an ancient biosynthetic pathway.  相似文献   

13.
The secondary metabolites produced by bacterial species serve many clinically useful purposes, and Streptomyces have been an abundant source of such compounds. However, a poor understanding of their regulatory cascades leads to an inability to isolate all of the secondary metabolites this genus is capable of producing. This study focuses on comparing synthetic small molecules that were found to alter the production of secondary metabolites in Streptomyces coelicolor. A survey of these molecules suggests that each has a distinct mechanism of action, and hence, could be used as a unique probe of secondary metabolism. A comparative analysis of two of these molecules, ARC2 and ARC6, confirmed that they modulate secondary metabolites in different ways. In a separate study, ARC2 was shown to give rise to a different phenotype through the inhibition of a target in fatty acid biosynthesis. The results of this study suggest that ARC6 does not have the same target, although it might target the same metabolic system. Furthermore, the results demonstrate that ARC2 and ARC6 act through distinct mechanisms and further suggest that chemical probes can be important tools in enhancing our understanding of secondary metabolism and the streptomycete life cycle.  相似文献   

14.
Carnivorous plants are exemplary natural sources of secondary metabolites with biological activity. However, the therapeutic antimicrobial potential of these compounds is limited due to intrinsic resistance of selected bacterial pathogens, among which Pseudomonas aeruginosa represents an extreme example. The objective of the study was to overcome the intrinsic resistance of P. aeruginosa by combining silver nanoparticles (AgNPs) with secondary metabolites from selected carnivorous plant species. We employed the broth microdilution method, the checkerboard titration technique and comprehensive phytochemical analyses to define interactions between nanoparticles and active compounds from carnivorous plants. It has been confirmed that P. aeruginosa is resistant to a broad range of secondary metabolites from carnivorous plants, i.e., naphthoquinones, flavonoids, phenolic acids (MBC = 512 µg mL−1) and only weakly sensitive to their mixtures, i.e., extracts and extracts’ fractions. However, it was shown that the antimicrobial activity of extracts and fractions with a significant level of naphthoquinone (plumbagin) was significantly enhanced by AgNPs. Our studies clearly demonstrated a crucial role of naphthoquinones in AgNPs and extract interaction, as well as depicted the potential of AgNPs to restore the bactericidal activity of naphthoquinones towards P. aeruginosa. Our findings indicate the significant potential of nanoparticles to modulate the activity of selected secondary metabolites and revisit their antimicrobial potential towards human pathogenic bacteria.  相似文献   

15.
16.
17.
The pine weevil Hylobius abietis (L.) is a severe pest of conifer seedlings in reforested areas of Europe and Asia. To identify minimally toxic and ecologically sustainable compounds for protecting newly planted seedlings, we evaluated the volatile metabolites produced by microbes isolated from H. abietis feces and frass. Female weevils deposit feces and chew bark at oviposition sites, presumably thus protecting eggs from feeding conspecifics. We hypothesize that microbes present in feces/frass are responsible for producing compounds that deter weevils. Here, we describe the isolation of a fungus from feces and frass of H. abietis and the biological activity of its volatile metabolites. The fungus was identified by morphological and molecular methods as Penicillium expansum Link ex. Thom. It was cultured on sterilized H. abietis frass medium in glass flasks, and volatiles were collected by SPME and analyzed by GC-MS. The major volatiles of the fungus were styrene and 3-methylanisole. The nutrient conditions for maximum production of styrene and 3-methylanisole were examined. Large quantities of styrene were produced when the fungus was cultured on grated pine bark with yeast extract. In a multi-choice arena test, styrene significantly reduced male and female pine weevils’ attraction to cut pieces of Scots pine twigs, whereas 3-methylanisole only reduced male weevil attraction to pine twigs. These studies suggest that metabolites produced by microbes may be useful as compounds for controlling insects, and could serve as sustainable alternatives to synthetic insecticides.  相似文献   

18.
19.
近年来,人们对植物的次级代谢过程以及代谢产物进行了研究,并取得了较大的进展,研究表明,可以用基因编码的生物合成酶和基因编码的诱变蛋白来改变不同的合成路径,而且还使用抗敏抑制竞争性路径,依此来提高目标次级代谢产物的产率^[1]。  相似文献   

20.
Phytoalexins are inducible secondary metabolites possessing antimicrobial activity against phytopathogens. Rice produces a wide array of phytoalexins in response to pathogen attacks and environmental stresses. With few exceptions, most phytoalexins identified in rice are diterpenoid compounds. Until very recently, flavonoid sakuranetin was the only known phenolic phytoalexin in rice. However, recent studies have shown that phenylamides are involved in defense against pathogen attacks in rice. Phenylamides are amine-conjugated phenolic acids that are induced by pathogen infections and abiotic stresses including ultra violet (UV) radiation in rice. Stress-induced phenylamides, such as N-trans-cinnamoyltryptamine, N-p-coumaroylserotonin and N-cinnamoyltyramine, have been reported to possess antimicrobial activities against rice bacterial and fungal pathogens, an indication of their direct inhibitory roles against invading pathogens. This finding suggests that phenylamides act as phytoalexins in rice and belong to phenolic phytoalexins along with sakuranetin. Phenylamides also have been implicated in cell wall reinforcement for disease resistance and allelopathy of rice. Synthesis of phenolic phytoalexins is stimulated by phytopathogen attacks and abiotic challenges including UV radiation. Accumulating evidence has demonstrated that biosynthetic pathways including the shikimate, phenylpropanoid and arylmonoamine pathways are coordinately activated for phenolic phytoalexin synthesis, and related genes are induced by biotic and abiotic stresses in rice.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号