首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 75 毫秒
1.
《Ceramics International》2016,42(13):14782-14787
NiSb2O6 and reduced graphene oxide (NiSb2O6/rGO) nanocomposites are successfully fabricated by a solid-state method combined with a subsequent solvothermal treatment and further used as anode material of lithium-ion battery. The NiSb2O6/rGO nanocomposites exhibit a higher reversible capacity (of ca. 1240.5 mA h g−1 at a current density of 50 mA g−1), along with a good rate capability (395.2 mA h g−1 at a current density of 1200 mA g−1) and excellent capacity retention (684.5 mA h g−1 after 150 cycles). These good performances could be attributed to the incorporated reduced grapheme oxide, which significantly improves the electronic conductivity of the NiSb2O6.  相似文献   

2.
Fe3O4 nanoparticles encapsulated in porous carbon fibers (Fe3O4@PCFs) as anode materials in lithium ion batteries are fabricated by a facile single-nozzle electrospinning technique followed by heat treatment. A mixed solution of polyacrylonitrile (PAN) and polystyrene (PS) containing Fe3O4 nanoparticles is utilized to prepare hybrid precursor fibers of Fe3O4@PS/PAN. The resulted porous Fe3O4/carbon hybrid fibers composed of compact carbon shell and Fe3O4-embeded honeycomb-like carbon core are formed due to the thermal decomposition of PS and PAN. The Fe3O4@PCF composite demonstrates an initial reversible capacity of 1015 mAh g−1 with 84.4% capacity retention after 80 cycles at a current density of 0.2 A g−1. This electrode also exhibits superior rate capability with current density increasing from 0.1 to 2.0 A g−1, and capacity retention of 91% after 200 cycles at 2.0 A g−1. The exceptionally high performances are attributed to the high electric conductivity and structural stability of the porous carbon fibers with unique structure, which not only buffers the volume change of Fe3O4 with the internal space, but also acts as high-efficient transport pathways for ions and electrons. Furthermore, the compact carbon shell can promote the formation of stable solid electrolyte interphase on the fiber surface.  相似文献   

3.
《Ceramics International》2017,43(8):6054-6062
In this work, we reported the synthesis of three dimensional flower-like Co3O4@MnO2 core-shell microspheres by a controllable two-step reaction. Flower-like Co3O4 microspheres cores were firstly built from the self-assembly of Co3O4 nanosheets, on which MnO2 nanosheets shells were subsequently grown through the hydrothermal decomposition of KMnO4. The MnO2 nanosheets shells were found to increase the electrochemical active sites and allow faster redox reaction kinetics. Based on these advantages, when used as an electrode for supercapacitors, the prepared flower-like Co3O4@MnO2 core-shell composite electrode demonstrated a significantly enhanced specific capacitance (671 F g−1 at 1 A g−1) as well as improved rate capability (84% retention at 10 A g−1) compared with the pristine flower-like Co3O4 electrode. Moreover, the optimized asymmetric supercapacitor device based on the flower-like Co3O4@MnO2//active carbon exhibited a high energy density of 34.1 W h kg−1 at a power density of 750 W kg−1, meaning its great potential application for energy storage devices.  相似文献   

4.
A simple approach was developed for the fabrication of a Fe2O3/carbon composite by impregnating activated carbon with a ferric nitrate solution and calcinating it. The composite contains graphitic layers and 10 wt.% Fe2O3 particles of 20–50 nm in diameter. The composite has a high specific surface area of ∼828 m2 g−1 and when used as the anode in a lithium ion battery (LIB), it showed a reversible capacity of 623 mAh g−1 for the first 100 cycles at 50 mA g−1. A discharge capacity higher than 450 mAh g−1 at 1000 mA g−1 was recorded in rate performance testing. This highly improved reversible capacity and rate performance is attributed to the combination of (i) the formation of graphitic layers in the composite, which possibly improves the matrix electrical conductivity, (ii) the interconnected porous channels whose diameters ranges from the macro- to meso- pore, which increases lithium-ion mobility, and (iii) the Fe2O3 nanoparticles that facilitate the transport of electrons and shorten the distance for Li+ diffusion. This study provides a cost-effective, highly efficient means to fabricate materials which combine conducting carbon with nanoparticles of metal or metal oxide for the development of a high-performance LIB.  相似文献   

5.
Reduced graphene oxide (rGO) tethered with maghemite (γ-Fe2O3) was synthesized using a novel modified sol–gel process, where sodium dodecylbenzenesulfonate was introduced into the suspension to prevent the undesirable formation of an iron oxide 3D network. Thus, nearly monodispersed and homogeneously distributed γ-Fe2O3 magnetic nanoparticles could be obtained on surface of graphene sheets. The utilized thermal treatment process did not require a reducing agent for reduction of graphene oxide. The morphology and structure of the composites were investigated using various characterization techniques. As-prepared rGO/Fe2O3 composites were utilized as anodes for half lithium ion cells. The 40 wt.%-rGO/Fe2O3 composite exhibited high reversible capacity of 690 mA h g−1 at current density of 500 mA g−1 and good stability for over 100 cycles, in contrast with that of the pure-Fe2O3 nanoparticles which demonstrated rapid degradation to 224 mA h g−1 after 50 cycles. Furthermore, the composite showed good rate capability of 280 mA h g−1 at 10C (∼10,000 mA g−1). These characteristics could be mainly attributed to both the use of an effective binder, poly(acrylic acid) (PAA), and the specific hybrid structures that prevent agglomeration of nanoparticles and provide buffering spaces needed for volume changes of nanoparticles during insertion/extraction of Li ions.  相似文献   

6.
《Ceramics International》2017,43(5):4520-4526
In this paper, magnetic porous Ni-modified SiOC(H) ceramic nanocomposites (Ni/SiOC(H)) were successfully prepared via a template-free polymer-derived ceramic route, which involves pyrolysis at 600 °C of nickel-modified allylhydridopolycarbosilane (AHPCS-Ni) precursors synthesized by the reaction of allylhydridopolycarbosilane (AHPCS) with nickel(II)acetylacetonate (Ni(acac)2). The resultant Ni/SiOC(H) nanocomposites are comprised of in-situ formed nanoscaled Ni socialized with small amounts of NiO and nickel silicides embedded in the amorphous SiOC(H) matrix. The materials show ferromagnetic behavior and excellent magnetic properties with the saturation magnetization in the range of 1.71–7.08 emu g−1. Besides, the Ni/SiOC(H) nanocomposites are predominantly mesoporous with a high BET surface area and pore volume in the range of 253–344 and 0.134–0.185 cm3 g−1, respectively. The measured porosity features cause an excellent adsorption capacity towards a template dye acid fuchsin with the adsorption capacity Qt at 10 min of 80.7–85.8 mg g−1 and the Qe at equilibrium of 123.8–129.8 mg g−1.  相似文献   

7.
《Ceramics International》2017,43(2):2155-2164
The development of wearable electronics has created a surge of interest in designing flexible energy storage device with high energy density and long lifespan. In this work, we have successfully fabricated a flexible asymmetric supercapacitor (ASC) based on the NiCo2S4@NiCo2O4 nanocolumn arrays (NCAs). The nickel cobalt sulfide/oxide core-shell nanostructures were rationally synthesized through a facile stepwise approach. The NiCo2S4@NiCo2O4 NCAs based electrode delivered a high specific capacitance of 2258.9 F g−1 at a current density of 0.5 A g−1. The as-assembled flexible ASC device exhibited a high energy density of 44.06 Wh kg−1, a high power density of 6.4 kW kg−1, and excellent cycling stability by retaining 92.5% after 6000 cycles. Excitingly, the electrochemical property of the ASC device could be maintained under severe bending, indicating superior flexibility and mechanical stability. The NiCo2S4@NiCo2O4 core-shell NCAs possess enormous potential for future wearable electronic applications.  相似文献   

8.
Porous iron oxide (Fe2O3) nanorods anchored on nitrogen-doped graphene sheets (NGr) were synthesized by a one-step hydrothermal route. After a simple microwave treatment, the iron oxide and graphene composite (NGr-I-M) exhibits excellent electrochemical performances as an anode for lithium ion battery (LIB). A high reversible capacity of 1016 mAh g1 can be reached at 0.1 A g1. When NGr-I-M electrode was further coated by 2 ALD cycles of ultrathin Al2O3 film, the first cycle Coulombic efficiency (CE), rate performance and cycling stability of the coated electrode can be greatly improved. A stable capacity of 508 mAh g1 can be achieved at 2 A g1 for 200 cycles, and an impressive capacity of 249 mAh g1 at 20 A g1 can be maintained without capacity fading for 2000 cycles. The excellent electrochemical performance can be attributed to the synergy of porous iron oxide structures, nitrogen-doped graphene framework, and ultrathin Al2O3 film coating. These results highlight the importance of a rational design of electrode materials improving ionic and electron transports, and potential of using ALD ultrathin coatings to mitigate capacity fading for ultrafast and long-life battery electrodes.  相似文献   

9.
Magnetic macroporous polymer monoliths have been prepared using styrene/divinylbenzene (S/DVB) high internal phase emulsions (HIPEs) as templates. Humic acid surface modified iron oxide magnetic nanoparticles (Fe3O4@HA) have been used to prepare magnetic emulsion templates. The effect of magnetic particle concentration has been investigated by changing the ratio of Fe3O4@HA nanoparticles in the continuous phase. Highly macroporous polymers with magnetic response were obtained by the removal of the internal phase after the curing of emulsions at 80 °C. Fe3O4@HA particles were characterized by XRD and FTIR. The porosity, pore morphology and magnetic properties of the macroporous polymers were characterized as a function of the Fe3O4@HA concentration by scanning electron microscopy (SEM), Brunauer–Emmet–Teller (BET) molecular adsorption method and vibrating sample magnetometry (VSM), respectively. BET and VSM measurements demonstrated that the specific surface area and the saturation magnetization of the polymer monoliths were changed according to the Fe3O4@HA concentration between 8.77–35.08 m2 g?1 and 0.63–11.79 emu g?1, respectively. Resulting magnetic monoliths were tested on the adsorption of Hg(II) and atomic absorption spectroscopy (AAS) was used to calculate the adsorption capacities. The maximum adsorption capacity of the magnetic monoliths was calculated to be 20.44 mmol g?1 at pH 4.  相似文献   

10.
《Ceramics International》2016,42(6):6874-6882
Due to the characteristics of an electronic insulator, Na2Li2Ti6O14 always suffers from low electronic conductivity as anode material for lithium storage. Via Ag coating, Na2Li2Ti6O14@Ag is fabricated, which has higher electronic conductivity than bare Na2Li2Ti6O14. Enhancing the Ag coating content from 0.0 to 10.0 wt%, the surface of Na2Li2Ti6O14 is gradually deposited by Ag nanoparticles. At 6.0 wt%, a continuous Ag conductive layer is formed on Na2Li2Ti6O14. While, particle growth and aggregation take place when the Ag coating content reaches 10.0 wt%. As a result, Na2Li2Ti6O14@6.0 wt% Ag displays better cycle and rate properties than other samples. It can deliver a lithium storage capacity of 131.4 mAh g−1 at 100 mA g−1, 124.9 mAh g−1 at 150 mA g−1, 119.1 mAh g−1 at 200 mA g−1, 115.8 mAh g−1 at 250 mA g−1, 111.9 mAh g−1 at 300 mA g−1 and 109.4 mAh g−1 at 350 mA g−1, respectively.  相似文献   

11.
《Ceramics International》2017,43(2):1968-1974
3D network-like porous MnCo2O4 nanostructures have been successfully fabricated through a facile and scalable sucrose-assisted combustion route followed by calcination treatment. Benefiting from its advantages of the unique 3D network-like architectures with large specific surface area (216.15 m2 g−1), abundant mesoporosity (2–50 nm) and high electronic conductivity, the as-prepared MnCo2O4 electrode displays a high specific capacitance of 647.42 F g−1 at a current density of 1 A g−1, remarkable capacitance retention rate of 70.67% at current density of 10 A g−1 compared with 1 A g−1, and excellent cycle stability (only 6.32% loss after 3000 cycles). The excellent electrochemical performances coupled with facile and cost effective method will render the as-fabricated 3D network-like porous MnCo2O4 as a promising electrode material for supercapacitors.  相似文献   

12.
In this article, a facile one-step strategy for the synthesis of ternary MnO2–Fe2O3–CeO2–Ce2O3/carbon nanotubes (CNT) catalysts was discussed. The as-prepared catalysts exhibited 73.6–99.4% NO conversion at 120–180 °C at a weight hourly space velocity (WHSV) of 210 000 ml·gcat 1·h 1, which benefited from the formation of amorphous MnO2, Fe2O3, CeO2, and Ce2O3, as well as high Ce3 + and surface oxygen (Oε) contents. The mechanism of formation of MnO2–Fe2O3–CeO2–Ce2O3/CNT catalysts was also proposed.  相似文献   

13.
《Ceramics International》2016,42(9):11184-11192
Transition metal oxide (Fe2O3, Co3O4 and CuO) loaded ZnTiO3–TiO2 nanocomposites were successfully prepared by solid state dispersion method. The structural, morphological and optical properties of samples were characterized by TGA/DTA, XRD, BET, FT-IR, DRS, PL, XPS and SEM techniques. The photocatalytic activity of samples was investigated by degradation of 4-chlorophenol in water under sunlight. The Fe2O3 loaded sample was found to exhibit much higher photocatalytic activity than the other composite powders. 7Fe2O3/ZnTi sample has the highest percentage of 4-chlorophenol degradation (100%) and highest reaction rate (1.27 mg L−1 min−1) was obtained in 45 min. The enhancement of photocatalytic activity for ZnTiO3–TiO2 sample with Fe2O3 addition may be attributed to its small particle size, the presence of more surface OH groups, lower band gap energy than other samples in this paper and the presence of more hexagonal ZnTiO3 phase in the morphology.  相似文献   

14.
《Ceramics International》2015,41(7):8843-8848
This paper reported the growth of novel pagoda-like Fe3O4 particles via a facile microemulsion-mediated hydrothermal procedure. The chemical compositions and morphologies of the as-grown Fe3O4 particles were characterized by X-ray diffraction (XRD), energy dispersive X-ray spectroscopy (EDX), and field emission scanning electron microscopy (FE-SEM). The morphologies of the as-prepared sample evolved from pagoda-like to pinwheel-like to flower-like shapes with increasing reaction time. In addition, the NaOH concentration and polyethylene glycol (PEG)-2000 had key effects on the formation of the final product. The electrocatalytic properties of the prepared pagoda-like micro-Fe3O4, as catalytic materials for a lithium–air battery, were further evaluated by galvanostatic charge/discharge cycling and electrochemical impedance spectrometry (EIS). Results showed that the cell displayed an initial discharge capacity of 1429 mA h g−1 at a voltage of 1.5–4.5 V at 100 mA g−1.  相似文献   

15.
Yang Si  Tao Ren  Yan Li  Bin Ding  Jianyong Yu 《Carbon》2012,50(14):5176-5185
Hierarchical porous, magnetic Fe3O4@carbon nanofibers (Fe3O4@CNFs) based on polybenzoxazine precursors have been synthesized by a combination of electrospinning and in situ polymerization. The benzoxazine monomers could easily form thermosetting nanofibers by in situ ring-opening polymerization and subsequently be converted into CNFs by carbonization. The resultant fibers with an average diameter of 130 nm are comprised of carbon fibers with embedded Fe3O4 nanocrystals, and could have a high surface area of 1885 m2 g?1 and a porosity of 2.3 cm3 g?1. Quantitative pore size distribution and fractal analysis were used to investigate the hierarchical porous structure using N2 adsorption and synchrotron radiation small-angle X-ray scattering measurements. The role of precursor composition and activation process for the effects of the porous structure is discussed, and a plausible correlation between surface fractal dimension and porous parameter is proposed. The Fe3O4@CNFs exhibit efficient adsorption for organic dyes in water and excellent magnetic separation performance, suggesting their use as a promising adsorbent for water treatment, and also provided new insight into the design and development of a carbon nanomaterial based on a polybenzoxazine precursor.  相似文献   

16.
《Ceramics International》2017,43(18):16474-16481
Spinel ferrite (Ni, Cu, Co)Fe2O4 was synthesized from the low nickel matte by using a co-precipitation-calcination method for the first time. The influences of the added amount of NiCl2·6H2O, calcination temperature and time on the structure and magnetic properties of the as-prepared ferrites were studied in detail by X-ray diffraction (XRD), Scanning electron microscopy (SEM), Raman spectroscopy, and Vibrating sample magnetometer (VSM). It is indicated that pure (Ni, Cu, Co)Fe2O4 with cubic phase could be obtained under the experimental conditions (NiCl2·6H2O added amount of 3.0: 100 g mL−1, calcination temperature from 800 to 1000 °C and calcination time from 1 to 3 h). With increasing calcination temperature and time, saturation magnetization (MS) of the synthesized (Ni, Cu, Co)Fe2O4 increased and the coercivity (HC) decreased. Under the optimum conditions (i.e. NiCl2·6H2O added amount of 3.0: 100 g mL−1, 1000 °C, 3 h), the MS and HC values of the product were approximately 46.1 emu g−1 and 51.0 Oe, respectively, which were competitive to those of other nickel ferrites synthesized from pure chemical reagents. This method explores a novel pathway for efficient and comprehensive utilization of the low nickel matte.  相似文献   

17.
《Ceramics International》2016,42(10):12097-12104
In this work, cross-linked graphene aerogel (CL-GA) and its composite with Fe2O3 nanoparticles (NPs) were synthesized through a one-step hydrothermal procedure by using p-phenylenediamine (PPD). Structural characterizations revealed that in the preparation of the composite PPD acts as a cross-liker and provides high surface area by decreasing restacking of graphene sheets and functions as nitrogen source simultaneously. The electrochemical characteristics of the nanocomposite were investigated by cyclic voltammetry (CV), galvanostatic charge/discharge, electrochemical impedance spectroscopy (EIS) and Fast Fourier transform continues cyclic voltammetry (FFTCCV). The results show that cross-linked graphene aerogel/Fe2O3 (CL-GA/Fe2O3) nanocomposite displays enhanced supercapacitive performance, where it has capacitance of 445 at 1 A g−1, high energy density of 63 W h Kg−1, and 89% capacitance retention after 5000 cycles in 3 M KOH. Presence of PPD considerably improved supercapacitive performance of nanocomposite as a result it could be promising material in synthesis of efficient graphene/metal oxide-based electrode material for high performance supercapacitors.  相似文献   

18.
We fabricated a monolithic Fe2O3/graphene hybrid directly by hydrothermal reaction of ferrous oxalate dihydrate and graphene oxide without using a reducing agent. The reduced graphene oxide formed an interconnected network structure that can be used as a support for homogeneous distribution of active Fe2O3 nanoparticles. The graphene network and the pore channels in the hybrid facilitate fast electron transfer and ion transport. This hybrid can be directly used as a free-standing anode for lithium ion batteries, which simplifies the fabrication procedure of electrodes, and also exhibited a high capacity of 1062 mA h g−1 at 100 mA g−1, high rate capability and excellent cyclic stability over 100 cycles. Furthermore, as a self-supported adsorbent, it provides a new idea on loading active materials to the suitable substrate, which can be used as a promising material for water purification due to its easy collection and excellent capability in removing As(V) from water. The results demonstrate the promising applications of bulk reduced assembly of graphene with functional metal oxides, which will be helpful for future development of graphene-based multifunctional materials.  相似文献   

19.
《Ceramics International》2015,41(8):9655-9661
The hollow core–shell ZnMn2O4 microspheres are successfully prepared by a solvothermal carbon templating method and then a annealing process. The crystal phase and particle morphology of resultant ZnMn2O4 microspheres are characterized by XRD and TEM. The electrochemical properties of the ZnMn2O4 microspheres as an anode material are investigated for lithium ion batteries. The results show that the ZnMn2O4 microspheres exhibit a reversible capacity of 855.8 mA h g−1 at a current density of 200 mA g−1 after 50 cycles. Even at 1000 mA g−1, the reversible capacity of the ZnMn2O4 microspheres is still kept at 724.4 mA h g−1 after 60 cycles. The enhanced electrochemical performance suggests the promising potential of the hollow core–shell ZnMn2O4 microspheres in lithium-ion batteries.  相似文献   

20.
《Ceramics International》2017,43(8):6232-6238
Uniform Nb2O5 nanospheres/surface-modified graphene (SMG) composites for anode materials in lithium ion batteries were synthesized by hydrothermal method. The microstructure and morphology of composites were investigated by X-ray diffraction, scanning electron microscopy and transmission electron microscope techniques. The experimental results showed that Nb2O5 nanospheres were tightly and uniformly grown on the surface of SMG nanosheets. Nb2O5 nanospheres/SMG composites exhibited an impressive reversible capacity of 404.6 mA h g−1 at the current density of 40 mA g−1 after 100 cycles, and an excellent rate capacity of 345.5 mA h g−1 at the current density of 400 mA g−1.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号