首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
《Ceramics International》2017,43(6):5136-5144
Stoichiometric Tantalum carbide (TaC) ceramics were prepared by reaction spark plasma sintering using 0.333–2.50 mol% Si3N4 as sintering aid. Effects of the Si3N4 addition on densification, microstructure and mechanical properties of the TaC ceramics were investigated. Si3N4 reacted with TaC and tantalum oxides such as Ta2O5 to form a small concentration of tantalum silicides, SiC and SiO2, with significant decrease in oxygen content in the consolidated TaC ceramics. Dense TaC ceramics having relative densities >97% could be obtained at 0.667% Si3N4 addition and above. Average grain size in the consolidated TaC ceramics decreased from 11 µm at 0.333 mol% Si3N4 to 4 µm at 2.50 mol% Si3N4 addition. The Young's modulus, Vickers hardness and flexural strength at room temperature of the TaC ceramic with 2.50 mol% Si3N4 addition was 508 GPa, 15.5 GPa and 605 MPa, respectively. A slight decrease in bending strength was observed at 1200 °C due to oxidation of the samples.  相似文献   

2.
Si3N4–SiCN composite ceramics were successfully fabricated through precursor infiltration pyrolysis (PIP) method using polysilazane as precursor and porous Si3N4 as preform. After annealed at temperatures varying from 900 °C to 1400 °C, the phase composition of SiCN ceramics, electrical conductivity and dielectric properties of Si3N4–SiCN composite ceramics over the frequency range of 8.2–12.4 GHz (X-band) were investigated. With the increase of annealing temperature, the content of amorphous SiCN decreases and that of N-doped SiC nano-crystals increases, which leads to the increase of electrical conductivity. After annealed at 1400 °C, the average real and imaginary permittivities of Si3N4–SiCN composite ceramics are increased from 3.7 and 4.68 × 10?3 to 8.9 and 1.8, respectively. The permittivities of Si3N4–SiCN composite ceramics show a typical ternary polarization relaxation, which are ascribed to the electric dipole and grain boundary relaxation of N-doped SiC nano-crystals, and dielectric polarization relaxation of the in situ formed graphite. The Si3N4–SiCN composite ceramics exhibit a promising prospect as microwave absorbing materials.  相似文献   

3.
《Ceramics International》2017,43(13):9906-9911
Silicon nitride-based composite ceramics with different contents of magnesium titanate have been fabricated via gas pressure sintering method. The phase compositions, microstructure, mechanical performances and dielectric properties of the composite ceramics were investigated. The density of the Si3N4-based composite ceramics firstly increased with additive of magnesium titanate powder up to 5 wt% and then gently decreased, and the mechanical properties firstly increased and then declined. Besides, the dielectric constant and dielectric loss increased with the increase of magnesium titanate contents. For the Si3N4-based composite ceramics with 5 wt% magnesium titanate powders, the flexural strength, elastic modulus, dielectric constant and dielectric loss reached 451 MPa, 274 GPa, 7.65, 0.0056, respectively. These results suggested that the magnesium titanate was beneficial for the improvement of mechanical performances and dielectric constant of Si3N4-based composite ceramics.  相似文献   

4.
Highly porous Si3N4 ceramics have been fabricated via freeze casting and sintering. The as-sintered samples were pre-oxidized at 1200–1400 °C for 15 min. The effect of pre-oxidation temperature on the microstructure, flexural strength, and dielectric properties of porous Si3N4 ceramics were investigated. As the pre-oxidation temperature increased from 1200 °C to 1400 °C, firstly, the flexural strength of the pre-oxidized specimens remained almost constant at 1200 °C, and then decreased to 14.2 MPa at 1300 °C, but finally increased to 25.6 MPa at 1400 °C, while the dielectric constant decreased gradually over the frequencies ranging from 8.2 GHz to 12.4 GHz. This simple process allows porous Si3N4 ceramics to have ultra-low dielectric constant and moderate strength, which will be feasible in broadband radome applications at high temperatures.  相似文献   

5.
《Ceramics International》2017,43(10):7948-7950
Graded Si3N4 ceramics with hard surface and tough core were prepared by two-step hot pressing with the homogenous starting composition. The inner Si3N4 layer was firstly hot-pressed at 1800 °C, subsequently covered with Si3N4 powders on both sides, and finally hot-pressed at 1600 °C. After two-step hot pressing, the resulting ceramics exhibited a zoned microstructure, differentiated by the phase assemblage of Si3N4 and grain size. The outer layers were well bonded to the inner layer. The outer layer exhibited bimodal and fine-grained microstructure, whereas the inner layer exhibited bimodal and coarse-grained microstructure. Vickers hardness of outer and inner layers were 18.1±0.2 GPa and 16.0±0.2 GPa, respectively, and fracture toughness were 4.2±0.1 MPa m1/2 and 5.5±0.2 MPa m1/2, respectively.  相似文献   

6.
Si3N4–TiN composites were successfully fabricated via planetary ball milling of 70 mass% Si3N4 and 30 mass% Ti powders, followed by spark plasma sintering (SPS) at 1250–1350 °C. The sintering mechanism for SPS was a hybrid of dissolution–reprecipitation and viscous flow. The electrical resistivity decreased with increasing sintering temperature up to a minimum at 1250 °C and then increased with the increasing sintering temperature. The composites prepared by SPS at 1250–1350 °C could be easily machined by electrical discharge machining. Composite prepared by SPS at 1300 °C showed a high hardness (17.78 GPa) and a good machinability.  相似文献   

7.
Si3N4-ZrB2 ceramics were hot-pressed at 1500 °C using self-synthesized fine ZrB2 powders containing 2.0 wt% B2O3 together with MgO-Re2O3 (Re = Y, Yb) additives. Both Si3N4 and ZrB2 grains in the hot-pressed ceramics were featured with elongated and equiaxed morphology. The presence of elongated Si3N4 and ZrB2 grains led to the partial texture of the ceramics under the applied pressure. Vickers hardness and fracture toughness of Si3N4-ZrB2 ceramics with MgO-Re2O3 additives prepared at low temperature were about 19–20 GPa and 9–11 MPa m1/2, respectively, higher than the reported values of Si3N4-based ceramics prepared at high temperature (1800 °C or above) under the same test method.  相似文献   

8.
30 vol.% 2 and 30 μm diamond dispersed Si3N4 matrix composites were prepared by pulsed electric current sintering (PECS) for 4 min at 100 MPa in the 1550–1750 °C range. The densification behaviour, microstructure, Si3N4 phase transformation and stiffness of the composites were assessed, as well as the thermal stability of the dispersed diamond phase. Monolithic Si3N4 with 4 wt% Al2O3 and 5 wt% Y2O3 sintering additives was fully densified at 1550 °C for 4 min and 60 MPa. The densification and α to β-Si3N4 transformation were substantially suppressed upon adding 30 vol.% diamond particles. Diamond graphitisation in the Si3N4 matrix was closely correlated to the sintering temperature and grit size. The dispersed coarse grained diamonds significantly improved the fracture toughness of the diamond composite, whereas the Vickers hardness was comparable to that of the Si3N4 matrix ceramic. The Elastic modulus measurements were found to be an excellent tool to assess diamond graphitisation in a Si3N4 matrix.  相似文献   

9.
Advanced silicon nitride (Si3N4) ceramics were fabricated using a mixture of Si3N4 and silicon (Si) powders via conventional processing and sintering method. These Si3N4 ceramics with sintering additives of ZrO2 + Gd2O3 + MgO were sintered at 1800 °C and 0.1 MPa in N2 atmosphere for 2 h. The effects of added Si content on density, phases, microstructure, flexural strength, and thermal conductivity of the sintered Si3N4 samples were investigated in this study. The results showed that with the increase of Si content added, the density of the samples decreased from 3.39 g/cm3 to 2.92 g/cm3 except for the sample without initial Si3N4 powder addition, while the thermal diffusivity of the samples decreased slightly. This study suggested that addition of Si powder, which varied from 0 to 100%, in the starting materials might provide a promising route to fabricate cost-effective Si3N4 ceramics with a good combination of mechanical and thermal properties.  相似文献   

10.
《Ceramics International》2016,42(10):11593-11597
A new gelling system based on the polymerization of hydantion epoxy resin and 3,3′-Diaminodipropylamine (DPTA) was successfully developed for fabricating silicon nitride (Si3N4) ceramics. The effects of pH value, the dispersant content, solid volume fraction and hydantion epoxy resin amount on the rheological properties of the Si3N4 slurries were investigated. The relative density of green body obtained from the solid loading of 52 vol% Si3N4 slurry reached up to 62.7%. As the concentration of hydantion epoxy resin increased from 5 wt% to 20 wt%, the flexural strength of Si3N4 green body enhanced from 5.3 MPa to 31.6 MPa. After pressureless sintering at 1780 °C for 80 min, the sintered samples exhibited the unique interlocking microstructure of elongated β-Si3N4 grains, which was beneficial to improve the mechanical properties of Si3N4 ceramics. The relative density, flexural strength and fracture toughness of Si3N4 ceramics reached 97.8%, 687 MPa and 6.5 MPa m1/2, respectively.  相似文献   

11.
Barium titanate/silicon nitride (BaTiO3/xSi3N4) powder (when x = 0, 0.1, 0.5, 1 and 3 wt%) were prepared by solid-state mixed-oxide method and sintered at 1400 °C for 2 h. X-ray diffraction result suggested that tetragonality (c/a) of the BaTiO3/xSi3N4 ceramics increased with increasing content of Si3N4. Density and grain size of BaTiO3/xSi3N4 ceramic were found to increase for small addition (i.e. 0.1 and 0.5 wt%) of Si3N4 mainly due to the presence of liquid phase during sintering. BaTiO3 ceramics containing such amount of Si3N4 also showed improved dielectric and ferroelectric properties.  相似文献   

12.
Thermal conductivity of Si3N4 containing large β-Si3N4 particles as seeds for grain growth was investigated. Seeds addition promotes growth of β-Si3N4 grains during sintering to develop the duplex microstructure. The thermal conductivity of the material sintered at 1900 °C improved up to 106 W m−1 K−1, although that of unseeded material was 77 Wm−1 K−1. Seeds addition leads to reduction of the sintering temperature with developing the duplex microstructure and with improving the thermal conductivity, which benefits in terms of production cost of Si3N4 ceramics with thermal conductivity. ©  相似文献   

13.
The oxidation in air of Si3N4-based ceramics containing 35 vol.% of TiN secondary phase and different amounts of sintering additives has been studied at different temperatures up to 1400 °C in dry or humid environment. The oxidation starts by crystal growth of TiO2 at the surface, then a multilayered scale develops under the rutile layer from 1000 °C. This subscale is composed of silicon nitride in which TiN particles are oxidized to agglomerates of rutile, glass and pores. The oxidation process is controlled by the matter transports, which take place in the intergranular phase. These transport phenomena are affected by the changes in distribution and composition of the glassy phase and by humidity which modifies the glass network structure and thus the in-diffusion rate. From 1200 °C, Si3N4 grains are also oxidized, the additional glass formed closes the residual porosities yielding scales more compact and developing an autoprotective behavior. At 1400 °C, glass phase crystallizes into cristobalite and the rutile top layer becomes discontinuous. Only composites with low amounts of sinter additives keep an autoprotective oxidation mode.  相似文献   

14.
A flexible method is presented, which enables the fabrication of porous as well as dense Si3N4/nano-SiC components by using Si3N4 powder and a preceramic polymer (polycarbosilazane) as alternative ceramic forming binder. The SiCN polymer benefits consolidation as well as shaping of the green body and partially fills the interstices between the Si3N4 particles. Cross-linking of the precursor at 300 °C increases the mechanical stability of the green bodies and facilitates near net shape machining. At first, pyrolysis leads to porous ceramic bodies. Finally, subsequent gas pressure sintering results in dense Si3N4/nano-SiC ceramics. Due to the high ceramic yield of the polycarbosilazane binder, the shrinkage during sintering is significantly reduced from 20 to 15 lin.%. Investigations of the sintered ceramics reveal, that the microstructure of the Si3N4 ceramic contains approx. 6 vol.% nano-scaled SiC segregations, which are located both at the grain boundaries and as inclusions in the Si3N4 grains.  相似文献   

15.
《Ceramics International》2017,43(13):9699-9708
ZrB2–SiC composite ceramics were doped with 0, 1, 3 and 5 wt% Si3N4 plus 1.6 wt% carbon (pyrolized phenolic resin) as sintering aids and fabricated by hot pressing process under a relatively low pressure of 10 MPa at 1900 °C for 2 h. For a comparative study, similar ceramic compositions were also prepared by pressureless sintering route in the same processing conditions, with no applied external pressure. The effect of silicon nitride dopant on the microstructural evolution and sintering process of such ceramic composites was investigated by a fractographical approach as well as a thermodynamical analysis. The relative density increased by the addition of Si3N4 in hot pressed samples as a fully dense composite was achieved by adding 5 wt% silicon nitride. A reverse trend was observed in pressureless sintered composites and the relative density values decreased by further addition of Si3N4, due to the formation of gaseous products which resulted in the entrapment of more porosities in the final structure. The formation of ZrC phases in pressureless sintered samples and layered BN structures in hot pressed ceramics was detected by HRXRD method and discussed by fractographical SEM-EDS as well as thermodynamical analyses.  相似文献   

16.
In situ synthesis of Si2N2O/Si3N4 composite ceramics was conducted via thermolysis of novel polysilyloxycarbodiimide ([SiOSi(NCN)3]n) precursors between 1000 and 1500 °C in nitrogen atmosphere. The relative structures of Si2N2O/Si3N4 composite ceramics were explained by the structural evolution observed by electron energy-loss spectroscopy but also by Fourier transform infrared and 29Si-NMR spectrometry. An amorphous single-phase Si2N2O ceramic with porous structure with pore size of 10–20 μm in diameter was obtained via a pyrolyzed process at 1000 °C. After heat-treatment at 1400 °C, a composite ceramic was obtained composed of 53.2 wt.% Si2N2O and 46.8 wt.% Si3N4 phases. The amount of Si2N2O phase in the composite ceramic decreased further after heat-treatment at 1500 °C and a crystalline product containing 12.8 wt.% Si2N2O and 87.2 wt.% Si3N4 phases was obtained. In addition, it is interesting that residual carbon in the ceramic composite nearly disappeared and no SiC phase was observed in the final Si2N2O/Si3N4 composite.  相似文献   

17.
Porous BN/Si3N4 composite ceramics with different BN contents have been fabricated by gel casting. The rheological behaviors of the suspensions, microstructure, mechanical properties, dielectric properties and critical temperature difference of thermal shock (ΔTC) of porous BN/Si3N4 composite ceramics with different BN contents were investigated. With BN contents increasing, the mechanical properties of the porous BN/Si3N4 composite ceramics were partially declined, but the dielectric properties and thermal shock resistances were enhanced at the same time. For the porous Si3N4 ceramic without BN addition, the porosity, flexural strength, dielectric constant and critical temperature difference were 48.1%, 128 MPa, 4.1 and 395 °C, while for the 10 vol% BN/Si3N4 porous composite ceramics, they were 49.4%, 106.6 MPa, 3.8, and 445 °C, respectively. The overall performance of the obtained porous BN/Si3N4 composite ceramics indicated that it could be one of the ideal candidates for high-temperature wave-transparent applications.  相似文献   

18.
Tetragonal ZrO2 polycrystalline (TZP) composites with 2 wt.% Al2O3 and co-stabilised with 1 mol% Y2O3 and (4, 6 or 8) mol% CeO2 were sintered at 1450 °C for 20 min in a single mode 2.45 GHz microwave furnace. For comparison, conventional sintering was performed in air at 1450 °C for 20 min. The starting powder mixture was obtained by a suspension coating technique using yttrium nitrate, cerium nitrate and pure m-ZrO2 nanopowder. Fully dense material grades were obtained by both sintering methods. The influence of the composition and the sintering methods on the final phase composition and microstructure were investigated by X-ray diffraction and scanning electron microscopy. Finer and more uniform microstructures were observed in the microwave sintered ceramics when compared to the conventionally sintered samples. The fracture toughness increases with decreasing stabiliser content, whereas a reverse relation was found for the Vickers hardness. Comparable toughness and hardness values were obtained for the microwave and conventionally sintered samples.  相似文献   

19.
In order to find out the influence of sintering additives on the electrical conductivity of Si3N4-based ceramics composites with dispersed carbon nano-fibers (CNFs) two different mixtures of sintering additives were tested – Al2O3/Yb2O3 and MgSiN2/Yb2O3, respectively. Optimization of hot-pressing conditions was performed for each mixture. The results show that the electrical conductivity can be effectively increased up to 1315 S/m by replacement of traditional sintering aid – alumina, with magnesium silicon nitride, while the mechanical properties remained on the same level. Other advantages of using MgSiN2 instead of alumina are the preservation of higher amounts of CNFs in the ceramic composite and lower densification temperature (1500 °C) compared to samples sintered with alumina-based sintering aids (1550 °C).  相似文献   

20.
《Ceramics International》2017,43(12):9153-9157
Si3N4 based composites were successfully sintered by spark plasma sintering using low cost BaCO3, SiO2 and Al2O3 as additives. Powder mixtures were sintered at 1600–1800 °C for 5 and 10 min. Displacement-temperature-time (DTT) diagrams were used to evaluate the sintering behavior. Shrinkage curve revealed that densification was performed between 1100 and 1700 °C. The specimen sintered at 1700 °C showed the maximum relative density (99.8±0.1%), flexural strength (352±16 MPa), Vickers harness (11±0.1 GPa) and toughness (5.6±0.05 MPa m1/2).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号