首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
In this investigation, the mechanical properties such as compression, impact, and flexural properties of graphene decorated with graphene quantum dots (GDGQD) epoxy composites with concentration of GDGQD ranging from 0.25 to 1 wt % were studied. Ideal mechanical properties are obtained by systematically varying the filler weight in the epoxy matrix. The morphological studies of GDGQD have been characterized using transmission electron microscope, X-ray diffraction, and Fourier transform infrared technique. The compression, impact, and flexural strengths were enhanced effectively by the GDGQD loading. With the addition of 0.75 wt % of GDGQD, the compressive strength, compressive modulus, flexural strength, and flexural modulus of the composites were improved by 22, 29, 31, and 63%, respectively. Also an improvement in impact strength of 102% for 0.75 wt % GDGQD epoxy sample was also obtained. Examination of fractured test specimens was performed with scanning electron microscope. The enhancement in the mechanical properties is due to the better stress transfer that is attributed by enhanced interfacial bonding between GDGQDs and the epoxy. Using the GDGQD aspect ratio in the two-dimensional randomly oriented filler modified Halpin–Tsai model, the theoretical flexural modulus for the GDGQD/epoxy composites has been established. © 2019 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2019 , 137, 48680.  相似文献   

2.
Graphene‐nanoplateles (Gr) and multiwalled carbon nanotubes (CNTs) reinforced epoxy based composites were fabricated using ultrasonication, a strong tool for effective dispersion of Gr/CNTs in epoxy. The effect of individual addition of two different nanofillers (Gr and CNT) in epoxy matrix, for a range of nanofiller content (0.1–1 wt %), has been investigated in this study. This study compares mechanical and thermomechanical behavior of Gr and CNT reinforced epoxy. Gr reinforcement offers higher improvement in strength, Young's modulus, and hardness than CNT, at ≤0.2 wt %. However, mode‐I fracture toughness shows different trend. The maximum improvement in fracture toughness observed for epoxy‐Gr composite was 102% (with 0.3 wt % loading of Gr) and the same for epoxy‐CNT composite was 152% (with 0.5 wt % loading of CNT). Thorough microstructural studies are performed to evaluate dispersion, strengthening, and toughening mechanisms, active with different nanofillers. The results obtained from all the studies are thoroughly analyzed to comprehend the effect of nanofillers, individually, on the performance of the composites in structural applications. © 2017 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2018 , 135, 46101.  相似文献   

3.
Carbon fiber‐reinforced epoxy composites (CFEC) are fabricated infusing up to 0.40 wt % amino‐functionalized XD‐grade carbon nanotubes (XDCNT) using the compression molding process. Interlaminar shear strength (ILSS) and thermomechanical properties of these composites are evaluated through short beam shear and dynamic–mechanical thermal analysis tests. XDCNTs are infused into Epon 862 resin using a mechanical stirrer followed by sonication. After the sonication, the mixture was placed in a three roll milling processor for three successive cycles at 140 rpm for uniform dispersion of CNTs. Epikure W curing agent was then added to the resin using a high‐speed mechanical stirrer. Finally, the fiber was reinforced with the modified resin using the compressive mold. ILSS was observed to increase by 22% at 0.3 wt % XDCNT loading. Thermal properties, including storage modulus, glass transition temperature, and crosslink density demonstrated linear enhancement up to the 0.3 wt % XDCNT loading. Scanning electron microscopy revealed better interfacial bonding in the CNT‐loaded CFEC. © 2014 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2014 , 131, 40709.  相似文献   

4.
This study thoroughly studied the implements of fluorosilane modified graphene oxide (GO) on the mechanical, thermal, and water absorption properties of the epoxy composites built up by specific content of modified GO. Fluorosilane graphene oxide (GOSiF) was analyzed using Fourier transform infrared spectroscopy, thermogravimetric analysis, Raman spectroscopy, X‐ray photoelectron spectroscopy, and X‐ray diffractometer. The epoxy composites tensile and bending modulus were increased by 11.46% and 62.25% with 0.1 and 0.5 wt% GOSiF loading, respectively. The good interfacial interaction was observed between epoxy matrix and GOSiF nanosheets under scanning electron microscopy. The thermal stability increases with GOSiF loading. Epoxy composite with 0.3 wt% GOSiF shows 5 °C increases in the T10%. The residual weight raised by 58.67% with 0.3 wt% GOSiF content. The water absorption study revealed small water uptake was obtained for all GOSiF composites. With 0.3 wt% loading of GOSiF, the maximum water content drops from 4.97% for neat epoxy to 1.98%. POLYM. ENG. SCI., 59:1250–1257 2019. © 2019 Society of Plastics Engineers  相似文献   

5.
In this study, glass fiber/epoxy composites were interfacially tailored by introducing polyamidoamine (PAM) dendrimer functionalized graphene oxide (GO) into epoxy matrix. Two different composites each containing varying loading fraction (0.5, 1.0, and 1.5 wt%) of GO and GO-PAM were fabricated via hot press processing. Composites were evaluated for interlaminar shear strength (ILSS), dynamic mechanical properties and thermal conductivity. The inclusion of 1.5 wt% GO-PAM resulted ~57.3%, ~42.7%, and ~54% enhancement in ILSS, storage modulus and thermal conductivity, respectively. Almost, ~71% reduction in coefficient of thermal expansion was also observed at same GO-PAM loading. Moreover, higher glass transition temperature was observed with GO-PAM addition. GO-PAM substantially improved fiber/matrix interfacial adhesion, which was witnessed through scanning electron microscopy. The enhanced thermo-mechanical performance was attributed to interfacial covalent interactions engendered by ring opening reaction between epoxy and amine moieties of PAM dendrimers. These multiscale composites with extraordinary functional properties can outperform conventional counterparts with improved reliability and performance.  相似文献   

6.
针对石墨烯在复合材料增强增韧上的应用,对石墨烯进行了酸化处理,采用超声分散方法制备酸化石墨烯/环氧树脂(EP)浇注体,并在此基础上制备了酸化石墨烯/碳纤维(CF)/环氧树脂(EP)复合材料。分别利用红外光谱和透射电镜表征了酸化石墨烯表面结构和微观形貌,利用拉伸、弯曲、冲击等机械测试手段评价了酸化石墨烯改性EP和CF-EP的力学性能,并利用扫描电镜对复合材料拉伸断面形貌进行观察。试验结果表明:石墨烯酸化处理后,成功在表面引入了羟基、羧基等极性基团;酸化石墨烯可对EP和CF/EP进行有效增强增韧,当其添加量为0.2wt%时,EP拉伸强度和冲击强度分别提高了23.3%和109.8%,CF/EP拉伸强度、弯曲强度分别提高了6.0%和10.6%,当酸化石墨烯添加量为0.5wt%时,CF/EP复合材料层间剪切强度提高了7.4%。微观形貌分析表明,酸化石墨烯对CF/EP增强改性主要是通过对EP进行增强增韧,同时提高CF和EP之间的界面性能来实现的。  相似文献   

7.
Epoxy‐clay nanocomposites were synthesized to examine the effects of the content and type of different clays on the structure and mechanical properties of the nanocomposites. Diglycidyl ether of bisphenol‐A (epoxy) was reinforced by 0.5–11 wt % natural (Cloisite Na+) and organically modified (Cloisite 30B) types of montmorillonite. SEM results showed that as the clay content increased, larger agglomerates of clay were present. Nanocomposites with Cloisite 30B exhibited better dispersion and a lower degree of agglomeration than nanocomposites with Cloisite Na+. X‐ray results indicated that in nanocomposites with 3 wt % Cloisite 30B, d‐spacing expanded from 18.4 Å (the initial value of the pure clay) to 38.2 Å. The glass transition temperature increased from 73°C, in the unfilled epoxy resin, to 83.5°C in the nanocomposite with 9 wt % Cloisite 30B. The tensile strength exhibited a maximum at 1 wt % modified clay loading. Addition of 0.5 wt % organically modified clay improved the impact strength of the epoxy resin by 137%; in contrast, addition of 0.5 wt % unmodified clay improved the impact strength by 72%. Tensile modulus increased with increasing clay loading in both types of nanocomposites. © 2005 Wiley Periodicals, Inc. J Appl Polym Sci 98: 1081–1086, 2005  相似文献   

8.
Possessing unique designs and properties absent in conventional materials, nanocomposites have made a remarkable imprint in science and technology. This is particularly true regarding the polymer matrix composites when they are further reinforced with nanoparticles. In this study, the effects of different weight percentages (0, 0.1, 0.2, 0.3, 0.4, and 0.5) of surface-modified graphene nanoplatelets (GNPs) on the microhardness and wear properties of basalt fibers/epoxy composites were investigated. The GNPs were surface modified by silane, and the composites were made by the hand lay-up method. The wear tests were conducted under two different loads of 20 and 40 N. The best wear properties were achieved at 0.3 wt % GNPs as a result of the GNPs' self-lubrication property and the formation of a stable transfer/lubricating film at the pin and disk interface. Moreover, the friction coefficient was lower at the higher normal load of 40 N. The microscopic studies by FESEM and SEM showed that the presence of GNPs up to 0.3 wt % led to the stability of the transfer/lubricating film by enhancing the adhesion of the basalt fibers to the epoxy resin. © 2019 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2019 , 136, 47986.  相似文献   

9.
Compatible blends of nonreactive thermoplastic fluoropolymer, poly(vinylidene fluoride) (PVDF) and thermoplastic polyurethane (TPU) at 70/30 weight ratio, were prepared by utilizing the unique structural feature of reduced graphene oxide (RGO). Here, RGO acts as a compatibilizer as well as a reinforcing filler. RGO interacts with both polymers and reduces the interfacial tension between them, leading to compatibilization. RGO content in the blends was varied from 0 to 0.5 wt %, and the best result was found at 0.3 wt % loading. Excellent compatibilization between PVDF and TPU was established by mechanical, morphological, and thermal property studies. Chemical interaction between the RGO/TPU and RGO/PVDF was proved by FTIR–ATR study. With the incorporation of 0.3 wt % RGO, tensile strength, Izod impact strength, and elongation at break of the blend were increased by 42%, 83%, and 43%, respectively. FESEM and AFM images of blends without loading of filler after etching out of TPU phase show nonuniformly distributed hole morphology. RGO-containing blend has shown much finer and uniformly distributed holes that confirm improved compatibility between the two incompatible polymers. RGO also improves the thermal stability of the compatible blends considerably. At 0.3 wt % loading, the onset of thermal degradation increased by about 10 °C. © 2018 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2019 , 136, 47010.  相似文献   

10.
To enhance the dispersion and interfacial interaction of graphene–epoxy matrix, polyacrylate chains grafted graphene oxide (PA-GO) was manufactured with A-174 functionalized GO (A-GO), methyl acrylate, and glycidyl methacrylate via free-radical random copolymerization technique. Fourier transform infrared, thermogravimetric analysis, X-ray photoelectron spectrum, Raman spectroscopy, X-ray diffraction, transmission electron microscopy, and nuclear magnetic resonance were performed to investigate the structure of A-GO and PA-GO. Then, the PA-GO was incorporated into epoxy resin via in situ solution intercalation dispersion method in order to form an interpenetrating network structure with epoxy resin. Field emission scanning electron microscope results indicate that the PA-GO exhibits excellent dispersion and interfacial compatibility in the epoxy matrix. In compared with pure epoxy, the tensile strength and impact strength of the epoxy composite with 1 wt % PA-GO were shifted from 62.78 ± 2.54 to 70.68 ± 2.02 MPa (about 12.6%) and 3.55 ± 0.41 to 4.98 ± 0.33 kJ m−2 (about 40.3%), respectively. Moreover, increased storage modulus is also observed in the dynamic mechanical analysis measurements compared with that of neat epoxy resin. © 2019 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2019 , 136, 47842.  相似文献   

11.
Epoxy resin nanocomposites incorporated with 0.5, 1, 2, and 4 wt % pristine graphene and modified graphene oxide (GO) nanoflakes were produced and used to fabricate carbon fiber‐reinforced and glass fiber‐reinforced composite panels via vacuum‐assisted resin transfer molding process. Mechanical and thermal properties of the composite panels—called hierarchical graphene composites—were determined according to ASTM standards. It was observed that the studied properties were improved consistently by increasing the amount of nanoinclusions. Particularly, in the presence of 4 wt % GO in the resin, tensile modulus, compressive strength, and flexural modulus of carbon fiber (glass fiber) composites were improved 15% (21%), 34% (84%), and 40% (68%), respectively. Likewise, with inclusion of 4 wt % pristine graphene in the resin, tensile modulus, compressive strength, and flexural modulus of carbon fiber (glass fiber) composites were improved 11% (7%), 30% (77%), and 34% (58%), respectively. Also, thermal conductivity of the carbon fiber (glass fiber) composites with 4% GO inclusion was improved 52% (89%). Similarly, thermal conductivity of the carbon fiber (glass fiber) composites with 4% pristine graphene inclusion was improved 45% (80%). The reported results indicate that both pristine graphene and modified GO nanoflakes are excellent options to enhance the mechanical and thermal properties of fiber‐reinforced polymeric composites and to make them viable replacement materials for metallic parts in different industries, such as wind energy, aerospace, marine, and automotive. © 2014 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2014 , 131, 40826.  相似文献   

12.
The epoxy resin matrix of carbon fiber (CF)‐reinforced epoxy composites was modified with novolac resin (NR) to improve the matrix‐dominated mechanical properties of composites. Flexural strength, interlaminar shear strength (ILSS), and impact strength were measured with unfilled, 7 wt% NR, 13 wt% NR, and 18 wt% NR filled to epoxy to identify the effect of adding NR on the mechanical properties of composites. The results showed that both interfacial and impact properties of composites were improved except for flexural property. The largest improvement in ILSS and impact strength were obtained with 13 wt% loading of NR. ILSS and impact strength were improved by 7.3% and 38.6%, respectively, compared with the composite without NR. The fracture and surface morphologies of the composite specimens were characterized by scanning electron microscopy. Intimate bonding of the fibers and the matrix was evident with the content of 7–13 wt% NR range. Decrease of crosslinking density and formation of NR transition layer were deduced with adding NR. POLYM. COMPOS., 2011. © 2010 Society of Plastics Engineers  相似文献   

13.
This article presents the evaluation of mechanical and erosive wear characteristics of bi-directional E-glass fiber based vinyl ester composites filled with TiO2 (titanium oxide) and ZnO (zinc oxide) of 10 wt.% and 20 wt.% respectively. The mechanical characterization of these composites is performed. The erosion rates of these composites have been evaluated at different impingement angles (30 °, 60 ° and 90 °). The particles used for the erosion measurements were silica sand with the diameters of 300, 425 and 600 μm and impact velocities of 30, 50 and 70 m/s were used. A plan of experiments, based on the Taguchi design, was performed to acquire data in a controlled way. An orthogonal array L27 (3 13) and Analysis of variance (ANOVA) have been applied to investigate the influence of process parameters on the erosive wear behaviour of these composites. The tensile strength of composite specimens is found to decrease with filler loading while hardness, flexural strength, inter-laminar shear strength (ILSS) and impact strength increase. TiO2 filled composites were observed to perform better than ZnO filled composites under erosive wear situations. The dominant wear mechanism is studied on the basis of micrographs of the worn-out surface of composite materials. Performance optimization of composites is done by using the VIKOR method.  相似文献   

14.
In this study, glass fibers were modified using γ‐glycidoxypropyltrimethoxysilane of different concentrations to improve the interfacial adhesion at interfaces between fibers and matrix. Effects of γ‐glycidoxypropyltrimethoxysilane on mechanical properties and fracture behavior of glass fiber/epoxy composites were investigated experimentally. Mechanical properties of the composites have been investigated by tensile tests, short beam tests, and flexural tests. The short‐beam method was used to measure the interlaminar shear strength (ILSS) of laminates. The tensile and flexural properties of composites were characterized by tensile and three‐point bending tests, respectively. The fracture surfaces of the composites were observed with a scanning electron microscope. On comparing the results obtained for the different concentrations of silane solution, it was found that the 0.5% GPS silane treatment provided the best mechanical properties. The ILSS value of heat‐cleaned glass fiber reinforced composite is enhanced by ∼59% as a result of the glass fiber treatment with 0.5% γ‐GPS. Also, an improvement of about 37% in tensile strength, about 78% in flexural strength of the composite with the 0.5% γ‐GPS treatment of glass fibers was observed. POLYM. COMPOS., 2009. © 2008 Society of Plastics Engineers  相似文献   

15.
The inter-cross-linked networks of unsaturated polyester (UP) toughened epoxy blends were developed. Montmorillonite (MMT) clay was dispersed into the same system to prepare blended epoxy/UP/clay nanocomposites in different weight ratios viz. 0%, 1%, 2%, 3% and 5%. Mechanical properties like tensile strength (TS), impact strength (IS) and interlaminar shear strength (ILSS) were characterized for the above nanocomposites. Blended nanocomposites were fabricated by high shear mechanical mixing followed by ultra-sonication process to get homogeneous mixing under the aid of in situ polymerization. Mechanical properties were studied as per ASTM standards. Data obtained from mechanical property studies indicated that the introduction of UP into epoxy resin improved the impact strength to an appreciable extent. Impact strength (IS) and tensile strength (TS) were significantly improved and optimized at 3 wt. % clay content when compared with neat blend (0 wt. % clay) composites. The homogeneous morphologies of the UP toughened epoxy and epoxy/UP/clay nanocomposite systems were ascertained using scanning electron microscope (SEM) studies.  相似文献   

16.
An experimental investigation into the influence of incorporation of graphene oxide (GO) and fly ash cenospheres (FACs) on the mechanical properties of epoxy resin (EP) composites. Two fillers were studied: GO-FAC hybrid and single GO. The GO-FAC hybrid was synthesized using a solution blending method, and characterized by FTIR, XRD, and scanning electron microscope (SEM). The modified EP composite specimens were prepared by adding different contents of GO and GO-FAC hybrid. The investigation showed that the FACs were successfully carried on the GO layer. The experimental data indicated that the addition of GO-FAC hybrid effectively improved the tensile property and the wear resistance of the EP composites, superior to the addition of single GO samples. The best tensile properties and lowest wear rate of EP composites were obtained when the hybrid content was 0.5 wt %. © 2018 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2020 , 137, 47173.  相似文献   

17.
The interlaminar shear strength of 2D needled C/SiC composites was measured using the double-notch shear test method. Interlaminar shear tests were performed under compressive and tensile loading. Shear stress–strain response and shear strain field evolution were studied using the digital image correlation (DIC) technique. The results show that the interlaminar shear strength of the specimen using the compressive loading method is 15% higher than that of the tensile loading method. Severe shear strain concentration was observed near the upper notch of the tensile loading specimen. Acoustic emission (AE) was utilized to monitor the damage during the tests. Typical damage mechanisms were categorized according to AE signal characteristics. The statistical results show that more matrix cracks were produced in the tensile loading specimen and no separate fiber/matrix debonding signal was detected in both specimens.  相似文献   

18.
The poor interlaminar properties restrict the application of carbon fiber reinforced polymer (CFRP) composites. In this work, a novel method for fabricating a graded interface structure is developed to improve the through-thickness thermal conductivity of CFRP composites. High-strength graphene nano-plates (GnP) and phenolic resin (PF) were selected to deposit on the surface of carbon fiber to design a novel CF/Epoxy laminates, where a simultaneous improvement of interlaminar shear strength (ILSS) and through-thickness thermal conductivity was observed. With addition of 1 wt % of GnP-PF in CF, 37.04% increase of the ILSS, and 16.67% enhancement of thermal conductivity compared to the original CFRP. The mechanism for improvement of both ILSS and thermal conductivity was studied by scanning electron microscopy and nano-indentation, where a better interface formed by GnP-PF has been clearly observed. © 2018 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2019 , 136, 47061.  相似文献   

19.
A new compression specimen was applied to woven glass/epoxy laminates. The specimen consists of epoxy layers cast on the sides of the laminate to prevent buckling. Thin‐sheet aluminum ends enable alignment and avoid crushing under end loading, which does not require any special fixture. The compression stress–strain behavior of the laminate was obtained from the specimens by discounting the previously measured stress–strain curve of the epoxy backings. Despite the higher scatter in compression tests, the average modulus was practically identical to the tensile modulus. Moreover, failure occurred away from the ends in nearly all of the specimens tested. The average compressive strength was 84% of the tensile strength and consistent with the flexural strength measured in four‐point bending tests. The present compression specimen could, therefore, become an interesting alternative to the more elaborate standard test methods available. Nevertheless, this new compression testing approach needs further evaluation involving application to other materials. POLYM. COMPOS., 2011. © 2011 Society of Plastics Engineers  相似文献   

20.
Polyvinyl chloride (PVC)/graphene and poly(methyl methacrylate) (PMMA)/graphene nanocomposites were made by solution casting technique with graphene weight fractions of 1, 5, 10, 15, and 20%. Multilayer structures of the composites were made by hot compression technique to study their electromagnetic interference shielding effectiveness (EMI SE). Tensile strength, hardness, and storage modulus of the nanocomposites were studied in relation with graphene weight fraction. There has been a substantial increase in the electrical conductivity and EMI SE of the composites with 15–20% filler loading. Differential thermal analysis of the composites shows improved thermal stability with an increase in graphene loading. PMMA/graphene composites have better thermal stability, whereas PVC/graphene composites have superior mechanical properties. About 2 mm thick multilayer structures of PMMA/graphene and PVC/graphene composites show a maximum EMI SE of 21 dB and 31 dB, respectively, in the X band at 20 wt % graphene loading. © 2019 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2019 , 136, 47792.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号