首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 546 毫秒
1.
BACKGROUND: The aim of this study was to evaluate the ammonium nitrogen removal performance of algae culture Chlorella vulgaris in a novel immobilized photobioreactor system under different operating conditions and to determine the biokinetic coefficients using the Stover–Kincannon model. RESULTS: The photobioreactor was continuously operated at different initial ammonium nitrogen concentrations (NH4‐N0 = 10–48 mg L−1), hydraulic retention times (HRT = 1.7–5.5 days) and nitrogen/phosphorus ratios (N/P = 4/1–13/1). Effluent NH4‐N concentrations varied between 2.1 ± 0.5 mg L−1 and 26 ± 1.2 mg L−1 with increasing initial NH4‐N concentrations from 10 ± 0.6 mg L−1 to 48 ± 1.8 mg L−1 at θH = 2.7 days. The maximum removal efficiency was obtained as 79 ± 4.5% at 10 mg L−1 NH4‐N concentration. Operating the system for longer HRT improved the effluent quality, and the percentage removal increased from 35 ± 2.4% to 93 ± 0.2% for 20 mg L−1 initial NH4‐N concentration. The N/P ratio had a substantial effect on removal and the optimum ratio was determined as N/P = 8/1. Saturation value constant, and maximum substrate utilization rate constant of the Stover–Kincannon model for ammonium nitrogen removal by C. vulgaris were determined as KB = 10.3 mg L−1 d−1, Umax = 13.0 mg L−1 day−1, respectively. CONCLUSION: Results indicated that the algae‐immobilized photobioreactor system had an effective nitrogen removal capacity when the operating conditions were optimized. The optimal conditions for the immobilized photobioreactor system used in this study can be summarized as HRT = 5.5 days, N/P = 8 and NH4‐N0 = 20 mg L−1 initial nitrogen concentration to obtain removal efficiency greater than 90%. Copyright © 2008 Society of Chemical Industry  相似文献   

2.
BACKGROUND: Heterogeneous photocatalysis is influenced by a number of parameters involving synergistic effects; hence, an experimental strategy design that considers interactions between the main variables is needed. The response surface methodology was applied for the investigation of photodegradation of 20 mg L?1 Orange II in aqueous solutions and for optimization of color removal efficiency. Preliminary studies were performed to identify the parameters to be selected for optimization. RESULTS: The input variables considered for experimental design were: solution initial pH, oxidizing agent (H2O2) initial concentration and UV‐A irradiation time. The multivariate experimental design allowed the development of a quadratic response surface model to be used for the prediction of color removal efficiency over the full range of the experimental region. Under the optimum conditions established in the region of experimentation (pH = 6.9, [H2O2]0 = 183 mg L?1 and t = 32 min), a 100% color removal efficiency was obtained in experiments. CONCLUSIONS: It was found that the variables considered have important effects on color removal efficiency. The results demonstrate that the use of experimental design strategy is indispensable for successful investigation and adequate modeling of the process because the interdependence of the reaction parameters cannot be neglected. Copyright © 2008 Society of Chemical Industry  相似文献   

3.
In this study, removal of the cationic dye acridine orange (AO) from aqueous solution using 4A zeolite was studied. The adsorption experiments were performed using batch system, and full factorial design was employed for investigating the condition of removal efficiency of dye. The four most important operating variables were the initial pH of the solution, the concentration of dye, the contact time, and the temperature. The 18 experiments were required to investigate the effect of variables on removal of the dye. The results were statistically analyzed to define important experimental variables and their levels using the analysis of variance (ANOVA). A regression model that considers the significant main and interaction effects was suggested and fitted the experimental data very well. Model predictions were found to be in good agreement (R2 = 99.99%, adjusted R2 = 99.86%) with experimental data. The optimized conditions for dye removal were at initial pH 3.0, 20.0 mg L?1 dye, temperature 298.0 K and 80.0 min adsorption time. The experimental data were analyzed by the Langmuir, Freundlich, Temkin and Sips adsorption models. The maximum predicted adsorption capacities for AO was obtained as 29.851 mg g?1. The adsorption thermodynamic parameters, namely ΔH°ads, ΔG°ads and ΔS°ads, were determined. Furthermore, the kinetic of AO adsorption on the 4A zeolite was analyzed using pseudo-first- and second-order kinetic models and the results showed that the removal was mainly a pseudo-second-order process.  相似文献   

4.
《分离科学与技术》2012,47(18):3115-3127
ABSTRACT

In this paper, the modeling and the optimization of the removal efficiency of ketoprofen (KTP) by the electrocoagulation process were studied. The central composite design experiments (CCD) method was used to study the main effects and the interaction effects between operational parameters and to optimize the value of each parameter. According to the regression equation obtained, the current density appears to be one of the most important parameters (b2 = +22.11) controlling the removal efficiency of KTP. The positive sign of b2 coefficient suggests that the increase of current density increases the yield of removal. The second signi?cant parameter with a negative effect was the initial KTP concentration (b3 = ?16.27). This result suggests that the removal efficiency was inversely proportional to the initial concentration. In addition, according to the model, the most influencing interactions were pH-current density, pH-initial concentration, and current density-initial concentration. The model obtained by CCD led to the following optimal conditions for KTP removal e?ciency (96.70%): pH = 7, i = 24.04 mA cm?2, and C0 = 5 mg L?1.  相似文献   

5.
The influence of the apatite on the efficiency of neutralization and on heavy metal removal of acid mine waste water has been studied. The analysis of the treated waste water samples with apatite has shown an advanced purification, the concentration of the heavy metals after the treatment of the waste water with apatite being 25 to 1000 times less than the Maximum Concentration Limits admitted by European Norms (NTPA 001/2005). In order to establish the macro‐kinetic mechanism in the neutralization process, the activation energy, Ea, and the kinetic parameters, rate coefficient of reaction, kr, and kt were determined from the experimental results obtained in “ceramic ball‐mill” reactor. The obtained values of the activation energy Ea >> 42 kJ mol?1 (e.g. Ea = 115.50 ± 7.50 kJ mol?1 for a conversion of sulphuric acid ηH2SO4 = 0.05, Ea = 60.90 ± 9.50 kJ mol?1 for η H2SO4 = 0.10 and Ea = 55.75 ± 10.45 kJ mol‐1 for η H2SO4 = 0.15) suggest that up to a conversion of H2SO4 equal 0.15 the global process is controlled by the transformation process, adsorption followed by reaction, which means surface‐controlled reactions. At a conversion of sulphuric acid η H2SO4 > 0.15, the obtained values of activation energy Ea < 42 kJ mol‐1 (e.g. Ea = 37.55 ± 4.05 kJ mol‐1 for η H2SO4 = 0.2, Ea = 37.54 ± 2.54 kJ mol‐1 for η H2SO4 = 0.3 and Ea = 37.44 ± 2.90 kJ mol‐1 for η H2SO4 = 0.4) indicate diffusion‐controlled processes. This means a combined process model, which involves the transfer in the liquid phase followed by the chemical reaction at the surface of the solid. Kinetic parameters as rate coefficient of reaction, kr with values ranging from (5.02 ± 1.62) 10‐4 to (8.00 ± 1.55) 10‐4 (s‐1) and transfer coefficient, kt, ranging from (8.40 ± 0.50) 10‐5 to (10.42 ± 0.65) 10‐5 (m s‐1) were determined.  相似文献   

6.
This paper describes a novel system of a water‐sparged aerocyclone (WSA) for fine particles (FP) removal in the air stream from a coal‐fired power plant. The effects of operating parameters, including inlet FP concentration (C 0(FP)), water jet velocity (UL), and air inlet velocity (UG) on the removal efficiency of FP (REFP) were investigated. The change of morphology, particle size distribution, and content of heavy metals of the FP samples before and after removal in the WSA were also compared. The results show that the RE of the FP and PM2.5 can reach as high as 99.36 and 99 %, respectively, under optimal conditions. A regression removal model of REFP = 85.08 × ReG0.0187 × ReL0.0037 × (C0(FP)/ρFP)0.0048 was proposed to predict REFP, and the calculated REFP by the model is in agreement with experimental data with deviations of ±0.5 %. This new technology provides an alternative approach for FP removal from exhaust gas and exhibits significant potential for industrial application.  相似文献   

7.
BACKGROUND: This study considers batch treatment of saline wastewater in an upflow anaerobic packed bed reactor by salt tolerant anaerobic organisms Halanaerobium lacusrosei . RESULTS: The effects of initial chemical oxygen demand (COD) concentration (COD0 = 1880–9570 mg L?1), salt concentration ([NaCl] = 30–100 g L?1) and liquid upflow velocity (Vup = 1.0–8.5 m h?1) on COD removal from salt (NaCl)‐containing synthetic wastewater were investigated. The results indicated that initial COD concentration significantly affects the effluent COD concentration and removal efficiency. COD removal was around 87% at about COD0 = 1880 mg L?1, and efficiency decreased to 43% on increasing COD0 to 9570 mg L?1 at 20 g L?1 salt concentration. COD removal was in the range 50–60% for [NaCl] = 30–60 g L?1 at COD0 = 5200 ± .100 mg L?1. However, removal efficiency dropped to 10% when salt concentration was increased to 100 g L?1. Increasing liquid upflow velocity from Vup = 1.0 m h?1 to 8.5 m h?1 provided a substantial improvement in COD removal. COD concentration decreased from 4343 mg L?1 to 321 mg L?1 at Vup = 8.5 m h?1, resulting in over 92% COD removal at 30 g L?1 salt‐containing synthetic wastewater. CONCLUSION: The experimental results showed that anaerobic treatment of saline wastewater is possible and could result in efficient COD removal by the utilization of halophilic anaerobic bacteria. Copyright © 2008 Society of Chemical Industry  相似文献   

8.
Iron(III)‐loaded carboxylated polyacrylamide‐grafted sawdust was investigated as an adsorbent for the removal of phosphate from water and wastewater. The carboxylated polyacrylamide‐grafted sawdust was prepared by graft copolymerization of acrylamide and N,N′‐methylenebisacrylamide onto sawdust in the presence of an initiator, potassium peroxydisulfate. Iron(III) was strongly attached to the carboxylic acid moiety of the adsorbent. The adsorbent material exhibits a very high adsorption potential for phosphate ions. The coordinated unsaturated sites of the iron(III) complex of polymerized sawdust were considered to be the adsorption sites for phosphate ions, the predominating species being H2PO ions. Maximum removal of 97.6 and 90.3% with 2 g L?1 of the adsorbent was observed at pH 2.5 for an initial phosphate concentration of 100 and 250 μmol L?1, respectively. The adsorption process follows second‐order kinetics. Adsorption rate constants as a function of concentration and temperature and kinetic parameters, such as ΔG±, ΔH±, and ΔS±, were calculated to predict the nature of adsorption. The L‐type adsorption isotherm obtained in the sorbent indicated a favorable process and fitted the Langmuir equation model well. The adsorption capacity calculated by the Langmuir adsorption isotherm gave 3.03 × 10?4 mol g?1 of phosphate removal at 30°C and pH 2.5. The isosteric heat of adsorption was also determined at various surface loadings of the adsorbent. The adsorption efficiency toward phosphate removal was tested using industrial wastewater. Different reagents were tested for extracting phosphate ions from the spent adsorbent. About 98.2% of phosphate can be recovered from the adsorbent using 0.1M NaOH. Alkali regeneration was tried for several cycles with a view to recover the adsorbed phosphate and also to restore the adsorbent to its original state. © 2002 Wiley Periodicals, Inc. J Appl Polym Sci 84: 2541–2553, 2002  相似文献   

9.
The microstructure of trans‐4‐methacryloyloxyazobenzene–methyl methacrylate copolymers prepared by solution polymerization process using AIBN as initiator is analyzed by one‐and two‐dimensional spectroscopy. Sequence distribution was calculated from the 13C(1H)‐NMR spectra of the copolymers. Comonomer reactivity ratios were determined using the Kelen–Tudos and the nonlinear error‐in‐variables methods are rA = 1.14 ± 0.08 and rM = 0.51 ± 0.03; rA = 1.13 ± 0.1 and rM = 0.50 ± 0.04, respectively. The sequence distribution of A‐ and M‐centered triads determined from 13C(1H)‐NMR spectra of copolymer is in good agreement with triad concentration calculated from a statistical model. The 2‐D heteronuclear single‐quantum correlation and correlated spectroscopy (TOCSY) was used to analyze the complex 1H‐NMR spectrum. © 1999 John Wiley & Sons, Inc. J Appl Polym Sci 74: 3016–3025, 1999  相似文献   

10.
A model chlorpyrifos microcapsule was prepared using coordination assembly between Fe3+ and tannic acid (TA). The influence of independent variables such as the dropping rate of TA (X1) and Fe3+ (X3), the concentration of TA (X2) and Fe3+ (X4), and the reaction temperature (X5) on the encapsulation efficiency (R1) and release characteristics (R2) of the microcapsule had been investigated, based on a central composite design with five factors and five levels. The results showed that the main factors influencing R1 and R2 were X4 and X2, then the interaction between X2 and X4, followed by X5 and X3. The optimal formula mainly based on higher R1 and lower R2 were determined and then tested. The optimized conditions led to an encapsulation efficiency and cumulative release proportion of 97.12% ± 0.72% and 40.07% ± 0.53%, along with the average relative errors of predicted values being 1.78% and ?1.60%, respectively. © 2015 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2016 , 132, 42865.  相似文献   

11.
The reaction enthalpy and rate of reduction of 1,1-diphenylethylene (DPE) by the frustrated Lewis pair formed between tris-pentafluorophenylborane (BCF) and diethyl ether (Et2O) in dichloromethane have been determined by mixing calorimetry. At 50 °C and 13.6 atm hydrogen, a 0.08 M solution of DPE is reduced to 1,1-diphenylethane, in the presence of 1 equivalent BCF and 0.8 equivalents Et2O, in 40 minutes. NMR spectroscopy showed>99 % conversion to the reduced product. The rate of conversion of the olefin to the alkane, as monitored by the time-dependent heat flow, showed a linear dependence on the free Et2O and BCF concentration. Integration of the heat flux provides a measurement of the reaction enthalpy, ΔH, of ca. −116±4 kJ mol−1 for the reaction Ph2C=CH2+H2→Ph2CHCH3. The equilibrium constant for dative adduct formation, Et2O+BCF↔Et2O−BCF, was determined as a function of temperature by 19F NMR spectroscopy, and provided an experimental measurement of the enthalpy, ΔH=−54.6±3.3 kJ mol−1, and entropy, ΔS=−154±13 J mol−1 K−1, for dative bond formation in DCM. Extrapolation of the Van’t Hoff plot to 50 °C provides Keq, which is used to estimate the concentration of free BCF and Et2O available to activate hydrogen.  相似文献   

12.
A test laboratory (lab) for carbon dioxide (CO2) adsorption from raw biogas onto a novel adsorbent was used to size a CO2 removal unit in the development of a low-cost biogas treatment technology. The novel adsorbent was made out of clay and burnt maize cob particles, impregnated with hot natural alkaline solution of pH 10 ± 0.5, degassed, and then activated at a temperature of 250°C, thereby making it low cost. The activated absorbents were spherical balls of average diameter 17 mm, density 410 kg/m3, and surface area 128 m2/g, and contained exchangeable ions due to the presence of clay and increased pore sizes due to impregnation, degassing, and activation. The effect of pressure drops on CO2 removal, the breakthrough curve, and the absorption isotherm were studied. As a result, reduced pressure drops enhanced CO2 removal and 102 Pa/m was the suitable pressure drop; pressure drops less than 102 Pa/m were impractical because the biogas did not exit. The breakthrough curve was in typical s-shape and thus satisfied its use for determining the adsorption rate constant (k1) to be 0.001952 l/mg s and the maximum percent of CO2 removal to be 87.8% at 102 Pa/m pressure drop and temperatures ranging from 20 to 28°C. The isotherm was found to closely conform to the definition of the Freundlich equation with the Freundlich coefficient of 0.01809 (l/g)n, where n = 1.37 at the same temperature range. Therefore, the determined k1 and fitted Freundlich isotherm can be used to size the CO2 adsorption unit under these conditions.  相似文献   

13.
Excessive fluoride concentration in potable water can lead to fluorosis of teeth and bones. In the present study, Donnan dialysis (DD) is applied for the removal of fluoride ions from diluted sodium fluoride solutions. A four factor two level (24) full factorial design was used to investigate the influence of different physico-chemical parameters on fluoride removal efficiency (Y F ) and fluoride flux (J F ) through anion exchange membrane. The statistical design determines factors which have the important effects on Donnan dialysis performance and studies all interactions among the considered parameters. The four significant factors were initial fluoride concentration, feed flow rate, temperature and agitation speed. The experimental results and statistical analysis show that the temperature and agitation speed have positive effects on fluoride removal efficiency and the initial fluoride concentration has a negative effect. In the case of fluoride flux, feed flow rate and initial concentration are the main effect and all factors have a positive effect. The interaction between studied parameters was not negligible on two responses. A maximum fluoride removal of 75.52% was obtained under optimum conditions and the highest value of fluoride flux obtained was 2.4 mg/cm2·h. Empirical regression models were also obtained and used to predict the flux and the fluoride removal profiles with satisfactory results.  相似文献   

14.
The polymerization of 2-vinylpyridine (2VP) in dimethylformamide (DMF) with azobisisobutyronitrile (AIBN) as initiator was studied with a differential scanning calorimeter. By taking an appropriate amount of AIBN and after correction for its decomposition, the following values could be obtained: Heat of polymerization ΔHp,o = ?68 ± 4 kJ/mol; overall Arrhenius activation parameters Ea = 90.0 ± 4 kJ/mol and ln A = 24 ± 1.0 (A = 2.6 × 1010 dm3/2/mol1/2. s).  相似文献   

15.
BACKGROUND: The piggery industry is important both worldwide and in Canada, but localized production of large quantities of swine slurry causes severe environmental problems such as aquatic pollution and greenhouse gas emissions. The main objective of this study was to determine whether it is possible to simultaneously treat methane (CH4) and swine slurry using an inorganic biofilter. RESULTS: A novel biofilter was designed to overcome the inhibition of CH4 biodegradation by swine slurry. The CH4 elimination capacity increased with the inlet load and a maximum value of 18.8 ± 1.0 g m?3 h?1 was obtained at an inlet load of 46.7 ± 0.9 g m?3 h?1 and a CH4 concentration of 3.3 g m?3. Four pure strains of fungi were used in an attempt to improve the removal of CH4, but no significant effect was observed. Between 0.35 and 3.4 g m?3, the CH4 concentration had no effect on swine slurry treatment with removal efficiencies of 67 ± 10% for organic carbon and 70 ± 7% for ammonium. The influence of the slurry supply was analyzed and the best results were obtained with a supply method of six doses of 50 mL per day. CONCLUSION: Even though the results were lower than those obtained for the biofiltration of CH4 alone, this study demonstrated the feasibility of treating CH4 and swine slurry with the same biofilter using a novel design. Copyright © 2012 Society of Chemical Industry  相似文献   

16.
Homopolymers of 2-hydroxypropyl methacrylate (HPMA) and copolymers with acrylic acid (AA) were prepared in 1,4-dioxane. The reactivity ratios were determined to be rAA = 0.27 ± 0.04 and rHPMA = 2.2 ± 0.2. The alkaline hydrolysis by sodium hydroxide of the HPMA monomer and polymers showed that while the HPMA monomer hydrolyzed readily as expected for a low-molecular-weight carboxylic ester the HPMA homopolymer and water-soluble sodium acrylate (NaA) copolymers were extremely resistant to alkaline hydrolysis. The saponification reaction followed a second-order rate equation, being first order with respect to both HPMA and hydroxide ion concentration. The Arrhenius parameters, activation energy E and frequency factor A, for the alkaline hydrolysis of HPMA monomer in water were found to be E = 10.3 Kcal/mol and A = 1.5 × 108 L/mol min, and those for the NaA–HPMA copolymers in water were found to be E = 24 kcal/mol and A = 4 × 1012 L/mol min. The NaA–HPMA copolymers had a limiting extent of hydrolysis, ranging from 9–90% ester conversion. A sharp rate decrease at low conversion was noted during the HPMA homopolymer hydrolysis in 58/42 dimethyl sulfoxide/water, allowing the calculation of two distinct reaction rates. © 1992 John Wiley & Sons, Inc.  相似文献   

17.
The article describes the synthesis and characterization of N‐(4‐methoxy‐3‐chlorophenyl) itaconimide (MCPI) and N‐(2‐methoxy‐5‐chlorophenyl) itaconimide (OMCPI) obtained by reacting itaconic anhydride with 4‐methoxy‐3‐chloroanisidine and 2‐methoxy‐5‐chloroanisidine, respectively. Structural and thermal characterization of MCPI and OMCPI monomers was done by using 1H NMR, FTIR, and differential scanning calorimetry (DSC). Copolymerization of MCPI or OMCPI with methyl methacrylate (MMA) in solution was carried out at 60°C using AIBN as an initiator and THF as solvent. Feed compositions having varying mole fractions of MCPI and OMCPI ranging from 0.1 to 0.5 were taken to prepare copolymers. Copolymerizations were terminated at low percentage conversion. Structural characterization of copolymers was done by FTIR, 1H NMR, and elemental analysis and percent nitrogen content was used to calculate the copolymer composition. The monomer reactivity ratios for MMA–MCPI copolymers were found to be r1 (MMA) = 0.32 ± 0.03 and r2 (MCPI) = 1.54 ± 0.05 and that for MMA–OMCPI copolymers were r1 (MMA) = 0.15 ± 0.02 and r2 (OMCPI) = 1.23 ± 0.18. The intrinsic viscosity [η] of the copolymers decreased with increasing mole fraction of MCPI/or OMCPI. The glass transition temperature as determined from DSC scans was found to increase with increasing amounts of OMPCI in copolymers. A significant improvement in the char yield as determined by thermogravimetry was observed upon copolymerization. © 2006 Wiley Periodicals, Inc. J Appl Polym Sci 101: 2391–2398, 2006  相似文献   

18.
Allylbenzene ozonide (ABO), a model for polyunsaturated fatty acid (PUFA) ozonides, initiates the autoxidation of methyl linoleate (18∶2 ME) at 37°C under 760 torr of oxygen. This process is inhibited by d-α-tocopherol (α-T) and 2,6-di-ert-butyl-4-methylphenol (BHT). The autoxidation was followed by the appearance of conjugated diene (CD), as well as by oxygen-uptake. The rates of autoxidation are proportional to the square root of ABO concentration, implying that the usual free radical autoxidation rate law is obeyed. Activation parameters for the thermal decomposition of ABO were determined under N2 in the presence of radical scavengers and found to be Ea=28.2 ±0.3 kcal mol−1 and log A=13.6±0.2; kd (37°C) is calculated to be (5.1±0.3)×10−7 sec−1. Autoxidation data are also reported for ozonides of 18∶2 ME and methyl oleate (18∶1 ME).  相似文献   

19.
Dimethyl glutamate, on treatment with allyl bromide, afforded dimethyl N,N-diallylglutamate which upon alkaline ester hydrolysis followed by acidification with aqueous HCl gave N,N-diallylglutamic acid hydrochloride [(CH2=CH–CH2)2NH+CH(CO2H)(CH2)2CO2H Cl?] I. Using Butler’s cyclopolymerization protocol, new monomer I underwent ammonium persulfate-initiated polymerization to give pyrrolidine ring-embedded linear cyclopolymer II i.e. ?[?CH2(C4H6)NH+{CH(CO2H)(CH2)2CO2H Cl?}CH2?]?n retaining the integrity of all the three functionalities of glutamic acid. Under the influence of pH, the repeating units of triprotic acid (+) in II were equilibrated to those of water-insoluble diprotic polyzwitterionic acid (±) III, water-soluble monoprotic poly(zwitterion-anion) (±?) IV, and its conjugate base polydianion (=) V. The critical salt concentration required to promote water solubility of (±) III has been determined to be 0.548 M NaCl, 0.271 M NaBr, 0.133 M NaI. The basicity constants of the carboxyl groups and trivalent nitrogen in (=) V have been determined. A 5 ppm and 20 ppm concentrations of III are effective in inhibiting the precipitation of CaSO4 from its supersaturated solution with a ≈100% scale inhibition efficiency at 40 °C for a duration of over 3 and 16 h, respectively.  相似文献   

20.
An autotropic Thiobacillus sp. CH11 was isolated from piggery wastewater containing hydrogen sulphide. The removal characteristics of hydrogen sulphide by Thiobacillus sp. CH11 were examined in the continuous system. The hydrogen sulphide removal capacity was elevated by the BDST (Bed Depth Service Time) method (physical adsorption) and an immobilized cell biofilter (biological conversion). The optimum pH to remove hydrogen sulphide ranged from 6 to 8. The average specific uptake rate of hydrogen sulphide was as 1·02×10−13 mol-S cell−1 h−1 in continuous systems. The maximum removal rate and saturation constant for hydrogen sulphide were calculated to be Vm = 30·1 mmol-S day−1 (kg-dry bead)−1 and Ks = 1·28 μmol dm−3, respectively. A criterion to design a scale-up biofilter was also studied. The maximum inlet loading in the linear region (95% removal) was 47 mmol-S day−1 (kg-dry bead)−1. Additionally, the biofilter exhibited high efficiency (>98·5%) in the removal of hydrogen sulphide at both low (<0·026 mg dm−3) and high (0·078 mg dm−3) concentrations. The results suggested that the Thiobacillus sp. CH11 immobilized with Ca-alginate is a potential method for the removal of hydrogen sulphide. © 1997 SCI.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号