首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Bisphenol‐A glycidyl ether epoxy resin was modified using reactive poly(ethylene glycol) (PEO). Dynamic mechanical analysis showed that introducing PEO chains into the structure of the epoxy resin increased the mobility of the molecular segments of the epoxy network. Impact strength was improved with the addition of PEO at both room (RT) and cryogenic (CT, 77 K) temperature. The curing kinetics of the modified epoxy resin with polyoxypropylene diamines was examined by differential scanning calorimetry (DSC). Curing kinetic parameters were determined from nonisothermal DSC curves. Kinetic analysis suggested that the two‐parameter autocatalytic model suitably describes the kinetics of the curing reaction. Increasing the reactive PEO content decreased the heat flow of curing with little effect on activation energy (Ea), pre‐exponential factor (A), or reaction order (m and n). © 2011 Wiley Periodicals, Inc. J Appl Polym Sci, 2012  相似文献   

2.
The curing kinetics of a bi-component system of o-cresol-formaldehyde epoxy resin (o-CFER) modified by liquid crystalline p-phenylene di[4-(2,3-epoxypropyl) benzoate] (p-PEPB), with 4,4-diamino-diphenyl ether (DDE) as a curing agent, was investigated by nonisothermal differential scanning calorimetry (DSC) method. The relationship between apparent activation energy, Ea, and the conversion α was obtained by the isoconversional method of Ozawa. A molecular reaction mechanism is proposed. The results show that the values of Ea in the initial stage are higher and tend to decrease slightly with the reaction progress. The primary amines have a higher Ea than secondary amines. The average curing Ea of o-CFER/p-PEPB/DDE system is 61.64 KJ/mol. These curing reactions can be described by a model proposed by ?esták and Berggren, which includes two parameters of m and n. Parameters such as reaction orders were evaluated using the ?esták-Berggren (S-B) equation and the following kinetic equation: dα/dt = Aexp(?Ea/RT m (1 ? a) n . The curing behavior of the system was studied by polarized optical microscopy (POM) and torsional braid analysis (TBA). The compatibility of the p-PEPB and o-CFER system is very good. Temperature of mechanical loss peak is higher by 63°C than the common o-CFER epoxy resin, when the weight ratio of p-PEPB with o-CFER is 4:100.  相似文献   

3.
A novel imidazole derivative (named as EMI‐g‐BGE) was synthesized through the reaction of 2‐ethyl‐4‐methyl imidazole (EMI) and butyl glycidyl ether (BGE) and characterized by elemental analysis, FTIR spectroscopy, and 1H NMR spectroscopy. The curing kinetic of diglycidyl ether of bisphenol A (DGEBA) epoxy resin with EMI‐g‐BGE as curing agent was studied by nonisothermal DSC technique at different heating rates. Dynamic DSC scans indicated that EMI‐g‐BGE was an effective curing agent of epoxy resin. The apparent activation energy Ea was 71.8 kJ mol?1 calculated through Kissinger method, and the kinetic parameters were determined by Málek method for the kinetic analysis of the thermal treatment obtained by DSC measurement. A two‐parameter (m, n) autocatalytic model (?esták‐Berggren equation) was found to be the most adequate selected kinetic model. In addition, the predicted curves from the kinetic model fit well with the nonisothermal DSC thermogram. © 2007 Wiley Periodicals, Inc. J Appl Polym Sci, 2008  相似文献   

4.
The curing kinetics of the liquid-crystalline epoxy resin sulfonyl bis(1,4-phenylene)bis[4-(2,3-epoxypropyloxy)benzoate] with 4,4′-diaminodiphenylsulfone was investigated by nonisothermal differential scanning calorimetry. The relationship between the apparent activation energy (Ea) and the conversion was determined, and the effects of the molecular structure and the order of liquid crystallinity on Ea are discussed in detail. Some parameters were evaluated with the autocatalytic kinetic model of the Šesták–Berggren (S–B) equation. The results show that there were some deviations of these simulation curves from the experimental curves at high heating rates and in the late stage of the curing reaction. The diffusion effect in the nonisothermal curing reaction is discussed, and a diffusion factor was proposed and introduced into the S–B equation. Then, a modified S–B equation was created, as follows: , where α is the conversion, t is the time, m and n are reaction orders, K is rate constant, C is the diffusion coefficient, and αc is the critical conversion. The theoretical simulation curves agreed very well with the experimental data as determined with the modified S–B equation, which may be more useful for describing and predicting the nonisothermal curing reaction kinetics of epoxy resin. © 2012 Wiley Periodicals, Inc. J Appl Polym Sci, 2012  相似文献   

5.
6.
The curing reactions of liquid crystalline 4,4′‐bis‐(2,3‐epoxypropyloxy)‐sulfonyl‐bis(1,4‐phenylene) (p‐BEPSBP) with 4,4′‐diaminodiphenylmethane (DDM) and 4,4′‐diaminodiphenylsulfone (DDS) were investigated by nonisothermal differential scanning calorimeter (DSC). The relationships of Ea with the conversion α in the curing process were determined. The catalyzed activation of hydroxyl group for curing reaction of epoxy resins with amine in DSC experiment was discussed. The results show that these curing reactions can be described by the autocatalytic ?esták‐Berggren model. The curing technical temperature and parameters were obtained, and the even reaction orders m, n, and ΔS for p‐BEPSBP/DDM and p‐BEPSBP/DDS are 0.35, 0.92, ?81.94 and 0.13, 1.32, ?24.45, respectively. The hydroxyl group has catalyzed activation for the epoxy–amine curing system in the DSC experiment. The average Ea of p‐BEPSBP/DDM is 67.19 kJ mol?1 and is 105.55 kJ mol?1 for the p‐BEPSBP/DDS system, but it is different for the two systems; when benzalcohol as hydroxyl group was added to the curing system, the average Ea of p‐BEPSBP/DDM decreases and increases for p‐BEPSBP/DDS. The crystalline phase had formed in the curing process and was fixed in the system. © 2009 Wiley Periodicals, Inc. J Appl Polym Sci, 2009  相似文献   

7.
Inherently flame retardant epoxy resin is a kind of halogen‐free material for making high‐performance electronic materials. This work describes an inherently flame retardant epoxy system composed of 4,4′‐diglycidyl (3,3′,5,5′‐tetramethylbiphenyl) epoxy resin (TMBP), 1,2‐dihydro‐2‐(4‐aminophenyl)‐4‐(4‐(4‐aminophenoxy) phenyl) (2H) phthalazin‐1‐one (DAP), and hexa(phenoxy) cyclotriphophazene (HPCTP). The cure kinetics of TMBP/DAP in the presence or absence of HPCTP were investigated using isoconversional method by means of nonisothermal differential scanning calorimeter (DSC). Kinetic analysis results indicated that the effective activation energy (Eα) decreased with increasing the extent of conversion (α) for TMBP/DAP system because diffusion‐controlled reaction dominated the curing reaction gradually in the later cure stage. TMBP/DAP/HPCTP(10 wt %) system had higher Eα values than those of TMBP/DAP system in the early cure stage (α < 0.35), and an increase phenomenon of Eα ~ α dependence in the later cure stage (α ≥ 0.60) due to kinetic‐controlled reaction in the later cure stage. Such complex Eα ~ α dependence of TMBP/DAP/HPCTP(10 wt %) system might be associated with the change of the physical state (mainly viscosity) of the curing system due to the introduction of HPCTP. These cured epoxy resins had very high glass transition temperatures (202–235°C), excellent thermal stability with high 5 wt % decomposition temperatures (>340°C) and high char yields (>25.6 wt %). © 2009 Wiley Periodicals, Inc. J Appl Polym Sci, 2009  相似文献   

8.
9.
The curing reaction kinetics of the diglycidyl ether of bisphenol A‐ (DGEBA) based epoxy was investigated according to the change of curing agents. Complex curing agents based on Ni(II) and Cu(II) chelates with benzil bisthiosemicarbazone (LH6) as a ligand was studied using differential scanning calorimetry. The curing reaction was characterized by high‐activation energies (Ea), cure onset (Ti), and peak maximum (Tp) temperatures. Dynamic kinetic parameters were calculated by using Kissinger and Ozawa methods. For the NiLH6Cl2, CuLH6Cl2, and LH6 the average values of Ea were calculated to be 165.16, 165.92, and 115.75 kJ/mol, respectively. For the NiLH6Cl2 systems, their activation energies at 40 and 30 phr are equal. The Ti and Tp of the DGEBA/NiLH6Cl2 system are lower than those of DGEBA/CuLH6Cl2 system. These results indicate that NiLH6Cl2 has a higher reactivity toward epoxy resin at the beginning of the curing reaction. The effect of hardener concentration, heating rate, and type of metal ion on the cure kinetic parameters and the shape of DSC thermograms were investigated. © 2007 Wiley Periodicals, Inc. J Appl Polym Sci, 2008  相似文献   

10.
The curing behavior of a novel low temperature curing polytriazole resin, prepared from p‐xylylene diazide and N,N,N′,N′‐tetrapropargyl‐p,p′‐diaminodiphenylmethane, was investigated by DSC and rheological analyses. The kinetics of the curing of the resin was studied by nonisothermal and isothermal DSC measurements and the kinetics parameters were obtained. The values of apparent activation energy Ea of the curing reaction obtained by nonisothermal and isothermal DSC are 80.7 and 75.3 kJ/mol, respectively. The curing of the resin was traced by the isothermal rheological analysis. The gelation times of the resin at 70, 75, 80, and 85°C are about 200, 150, 110, and 75 min, respectively. The viscosity equation for the resin was found as follows: © 2007 Wiley Periodicals, Inc. J Appl Polym Sci 2007  相似文献   

11.
环氧树脂固化动力学的非等温DSC研究   总被引:5,自引:0,他引:5  
用非等温DSC对环氧树脂在动态升温过程中的固化动力学进行了研究,采用Kissinger方程对固化动力学模型参数中固化反应活化能、反应级数和指前因子进行了计算,并用Ozawa法对固化反应活化能进行了验证,计算结果表明,EP/DDS固化反应符合n阶固化动力学模型,结合不同升温速率下的特征温度,对环氧树脂的固化条件进行了优化。  相似文献   

12.
The curing kinetics and the glass transition behavior of amino-polycarbonate with diglycidyl ether of bisphenol-A epoxy resin systems were studied by differential scanning calorimetry (DSC). The ASTM E-698 method was chosen to determine the kinetics parameters of the curing reaction, including the activation energy, preexponential factor, rate constant, and 60-min half-life temperature. The amino-polycarbonate was able to accelerate the curing reaction, reduce the apparent active energy, and decrease Tg of the systems. A homogeneous amino-polycarbonate/epoxy resin network was observed in scanning electron microscopy (SEM) pictures. © 2001 John Wiley & Sons, Inc. J Appl Polym Sci 82: 833–838, 2001  相似文献   

13.
The study of the kinetics of the curing of isocyanate quasi‐prepolymers with water was performed by infrared spectroscopy and differential scanning calorimetry. The influence of the free isocyanate content, polyol functionality, and of the addition of an amine catalyst (2,2′‐dimorpholinediethylether) in the reaction kinetics and morphology of the final poly(urethane urea) was analyzed. A second‐order autocatalyzed model was successfully applied to reproduce the curing process under isothermal curing conditions, until gelation occurred. A kinetic model‐free approach was used to find the dependence of the effective activation energy (Ea) with the extent of cure, when the reaction was performed under nonisothermal conditions. The dependence of Ea with the reaction progress was different depending on the initial composition of the quasi‐prepolymer, which reveals the complexity of the curing process. © 2007 Wiley Periodicals, Inc. J Appl Polym Sci 2008  相似文献   

14.
Curing kinetics and properties of epoxy resin-fluorenyl diamine systems   总被引:1,自引:0,他引:1  
Wenbin Liu  Qihao Qiu  Zichun Huo 《Polymer》2008,49(20):4399-4405
Diglycidyl ether of bisphenol fluorene (DGEBF), 9,9-bis-(4-aminophenyl)-fluorene (BPF) and 9,9-bis-(3-methyl-4-aminophenyl)-fluorene (BMAPF) were synthesized to introduce more aromatic structures into the epoxy systems, and their chemical structures were characterized with FTIR, NMR and MS analyses. The curing kinetics of fluorenyl diamines with different epoxy resins including DGEBF, cycloaliphatic epoxy resin (TDE-85) and diglycidyl ether of bisphenol A (DGEBA) was investigated using non-isothermal differential scanning calorimetry (DSC), and determined by Kissinger, Ozawa and Crane methods. The thermal properties of obtained polymers were evaluated with dynamic mechanical thermal analysis (DMTA) and thermogravimetric analysis (TGA). The results show that the values of activation energy (Ea) are strongly dependent on the structures of epoxy resin and curing agent. The curing reactivity of epoxy system is restrained by the introduction of rigid fluorene into chain backbone and flexible methyl into side groups. The cured DGEBF/fluorenyl diamine systems exhibit remarkably higher glass transition temperature, better thermal stability and lower moisture absorption compared to those of DGEBA/fluorenyl diamine systems, and display approximate heat resistance and much better moisture resistance relative to those of TDE-85/fluorenyl diamine systems.  相似文献   

15.
A new organic–inorganic hybrid material was prepared through reactive blending of hydrogenated carboxylated nitrile rubber (HXNBR) with epoxycyclohexyl polyhedral oligomeric silsesquioxanes (epoxycyclohexyl POSS). The structure of the composite was characterized by Fourier transform infrared spectroscopy (FTIR) and solid‐state 13C Nuclear Magnetic Resonance spectra (solid‐state 13C‐NMR). The differential scanning calorimetry (DSC) at different heating rates was conducted to investigate the curing kinetics. A single overall curing process by an nth‐order function (1 ? α)n was considered, and multiple‐heating‐rate models (Kissinger, Flynn–Wall–Ozawa, and Crane methods) and the single‐heating‐rate model were employed. The apparent activation energy (Ea) obtained showed dependence on the POSS content and the heating rate (β). The overall reaction order n was practically constant and close to 1. The isoconversion Flynn–Wall–Ozawa method was also performed and fit well in the study. With the single‐heating‐rate model, the average Ea for the compound with a certain POSS content, 66.90–104.13 kJ/mol was greater than that obtained with Kissinger and Flynn–Wall–Ozawa methods. Furthermore, the calculated reaction rate (dα/dt) versus temperature curves fit with the experimental data. © 2011 Wiley Periodicals, Inc. J Appl Polym Sci, 2012  相似文献   

16.
以9,9-双[4-4-氨基苯氧基苯基]芴(BAOFL)作为固化剂,采用非等温DSC技术,研究了BAOFL/环氧树脂(E-51、TDE-85和芴基环氧树脂)体系的固化反应动力学,利用动态热机械分析仪(DMA)和热重分析仪(TGA)测试了固化树脂的力学性能和热稳定性。结果表明,固化反应活化能与环氧树脂和固化剂的结构密切相关,芳醚的引入提高了氨基与环氧基的反应性,固化树脂呈现出优良的热性能和力学性能,其玻璃化转变温度(T)达到206~248℃,贮能模量为2.54~2.94 GPa,初始热分解温度312~375℃,700℃g时的残炭率达到15.2%~31.7%。()  相似文献   

17.
The curing kinetics of epoxy nanocomposites prepared by incorporating graphene oxide (GO) and chemically reduced graphene oxide (rGO) have been studied using isothermal and nonisothermal differential scanning calorimetry. The kinetic parameters of the curing processes in these systems have been determined by a Kamal and Sourour phenomenological model expanded by a diffusion factor. The predicted curves determined using the kinetic parameters fit well with the isothermal DSC thermograms revealing the proposed kinetic equation clearly explains the curing kinetics of the prepared epoxy amine nanocomposites. Experimental and modeling results demonstrate the presence of an accelerating effect of the GO on the cure of the resin matrix. The use of rGO instead of GO resulted in a slight acceleration reaction rate due to the reduced presence of oxidation groups in rGO. © 2017 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2017 , 134, 44803.  相似文献   

18.
To prepare a high‐performance epoxy, we synthesized three types of diamines {N,N′‐(4,4′‐diphenylether)‐bis(4‐aminophthalimide), 4,4′‐bis(p‐aminophenoxy)dibenzalphentaerythriol, and 2,2′‐bis[4‐(p‐aminobenzoyl)phenyl]propane} as epoxy curing agents with a two‐step reaction sequence. The structures of the synthesized diamines were confirmed with Fourier transform infrared and nuclear magnetic resonance spectroscopy. The curing kinetics and thermal stability of the cured epoxy resin with diglycidylether of bisphenol A were estimated with differential scanning calorimetry and thermogravimetric analysis under a nitrogen atmosphere. The kinetics parameters were determined with the Ozawa and Kissinger equations. © 2001 John Wiley & Sons, Inc. J Appl Polym Sci 81: 279–284, 2001  相似文献   

19.
Innovative reactive blends containing epoxy and brominated epoxy (BE) incorporated with resole-type phenolic were studied with the aim to elucidate the curing kinetics and the final thermomechanical characteristics of this unique system. Curing kinetics was investigated by means of the activation energy determined using differential scanning calorimetry (DSC ) at various heating rates analyzed by the Arrhenius equation. Both DSC and Fourier transform infrared revealed that bromine elimination at elevated temperatures (above 220 °C) had lowered the activation energy in the case of BE containing phenolic blends. The thermomechanical properties showed that the addition of conventional epoxy to resole decreased its thermal properties and modulus compared to neat resole. Distinctively, BE/resole blends exhibited increased glass-transition temperature, compared to diglycidyl ether of bisphenol A/resole blends in combination with higher elongation and toughness compared to neat resole. It was concluded that BE/epoxy resin/phenolic reactive systems offer high T g, mechanical properties and toughness and hence are applicable for structural adhesives and for matrices of polymer-fiber composites. © 2018 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2019 , 136, 47172.  相似文献   

20.
采用非等温DSC(差示扫描量热)法对EP(环氧树脂)/改性DDM(4,4′-二氨基二苯基甲烷)体系的固化反应过程进行了跟踪。采用Kissinger、Ozawa、Crane和T-β(温度-升温速率)外推法等得到该固化体系的动力学参数和固化工艺条件,并对其力学性能和热变形温度进行了测定。结果表明:EP/改性DDM体系的表观活化能为49.43 kJ/mol,反应级数为0.869,固化条件为"85℃/2 h→125℃/2 h",热变形温度为130℃;与EP/DDM体系相比,该固化体系的表观活化能降低了7.0%,热变形温度下降了16.1%,拉伸强度和压缩强度提高了20%以上,而弯曲强度和弯曲模量基本上保持不变。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号