首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 281 毫秒
1.
《Ceramics International》2023,49(5):7333-7340
Transparent Pr3+ doped Ca1-xGdxF2+x (x = 0, 0.01, 0.03, 0.06, 0.10, 0.15) polycrystalline ceramics with fine-grained microstructures were prepared by the hot-pressing method. The dependence of microstructure, optical transmittance, luminescence performances and mechanical properties on the Gd3+ concentrations for Pr3+:Ca1-xGdxF2+x transparent ceramics were investigated. The Gd3+ ions show positive effects on the microhardness of Pr3+:Ca1-xGdxF2+x transparent ceramics as a result of the decrease in the grain sizes. Excited by the Xenon lamp of 444 nm, typical visible emissions located at 484 nm, 598 nm and 642 nm were observed. Furthermore, the incorporation of Gd3+ ions can greatly enhance the photoluminescence performance owing to the improvement in the concentration quenching effect. The quenching concentration of Pr3+ ions in CaF2 transparent ceramics increased to 1 at.% as a result of the positive effect of Gd3+ codoping. The energy transfer mechanism of Pr3+ in the Pr3+:Ca1-xGdxF2+x transparent ceramics has been investigated and discussed.  相似文献   

2.
0.2–5.0?at% Pr3+-doped CaF2 transparent ceramics were fabricated by hot-pressed processing for the first time. The phase compositions, microstructure and optical characteristics of the presented transparent ceramics were examined systematically. The average in-line transmittance of Pr:CaF2 transparent ceramics (2.0?mm thick) with high Pr3+ doping concentrations (1.0–5.0?at%) exceeds 86% at the wavelength of 1200?nm. The absorption spectrum manifests that the prepared Pr:CaF2 transparent ceramics contain some absorption peaks overlapped with emission bands of the commercial InGaN laser diodes. Further, a detailed investigation on the visible emission properties as a function of Pr3+ concentrations in CaF2 transparent ceramics was reported. The emission spectra presented two main characteristic peaks at 496?nm (bluish green) and 656?nm (red) corresponded to the transitions of 3P03H4 and 3P03F2 for Pr3+ activator ions. With the increase of the Pr3+ doping concentrations, the emission intensity and decay lifetimes decreased generally attributed to the concentration quenching effect. Details on energy transfer mechanism of Pr3+ in CaF2 transparent ceramics were demonstrated and discussed.  相似文献   

3.
Nd3+ doped strontium fluorophosphate (S-FAP), with chemical formula Sr5(PO4)3F, nanopowders were prepared using the co-precipitation method. The prepared powders had no impurity phase with a grain size of about 30 nm and the doping limit of Nd3+ ions in strontium fluorophosphate is about 9 at.%. The morphology and particle size were determined by the doping concentration of Nd3+. Anisotropic Nd: S-FAP transparent ceramics with different Nd3+ doping concentrations were fabricated successfully by the simple hot-pressing method. The grain size of prepared S-FAP transparent ceramics decreased first and then increased with the increase of Nd3+ concentration. The 2 at.% Nd: S-FAP ceramic presented the highest optical transmittance at all wavelengths range. The characteristic transitions from the ground state to the excited states of Nd3+ ions were observed from the absorption spectra, and the absorption cross-section was calculated at 3.71 × 10–20 cm2. The influence of Nd3+ ion concentration on luminescence intensity and fluorescence lifetime was studied under 796 nm excitation. The strong emission of 4F3/24I9/2 transition in Nd: S-FAP was calculated by Judd–Ofelt (J-O) theory.  相似文献   

4.
Highly transparent X2O3 sesquioxide ceramics were obtained from a solid solution of five different oxides (Lu2O3, Y2O3, Yb2O3, Gd2O3, and Dy2O3), mixed in an equal molar ratio according to the principle of high-entropy. The fabricated (Lu, Y, Yb, Gd, Dy)2O3 ceramics achieved 99.97 % of the relative density and exhibited a high degree of optical transparency with the in-line transmittance of almost 80 % in the visible wavelength range. Emissions of Gd3+ (6PJ8S7/2 at 312 nm), Dy3+ (4F9/26H15/2 at 492 nm and 4F9/26H13/2 at 572 nm), and Yb3+ (2F5/22F7/2 at 1031 nm) suggested a potential application of the high-entropy ceramics as multi-wavelength emission phosphor transparent ceramics. High-entropy ceramics also exhibited lower specific heat and thermal conductivity compared to single-element sesquioxide ceramics. This work demonstrated that highly transparent oxide ceramics, with complex chemical compositions and good optical properties, could be obtained using the high-entropy principle.  相似文献   

5.
Nd3+ doped SrF2 and CaF2 transparent ceramics were fabricated by vacuum hot-press sintering and the absorption spectra, emission spectra as well as luminescence decays of the samples were measured. Judd-Ofelt (J–O) theory was used to analyze the optical performance of Nd3+ in these two isostructural hosts. The Nd: SrF2 transparent ceramic was found to have smaller line strength, larger radiative lifetime and smaller Ω2 value (corresponding to more ionic Nd3+-ligand bonding and more symmetry of Nd3+ environment). These features made it easier for Nd: SrF2 to realize population inversion and strong emission, thus doing good to laser performance. The strong emission of 4F3/24I9/2 transition in Nd: SrF2, which was predicted by J–O theory and demonstrated by luminescence spectrum, made it possible to achieve effective laser output around 900 nm. The intensity parameters and radiative lifetimes of ceramics were found comparable with their corresponding single crystals.  相似文献   

6.
Highly transparent Nd‐doped calcium fluoride (Nd: CaF2) ceramics with different Nd‐doped concentrations were fabricated by hot‐pressed method using Nd: CaF2 nanopowders synthesized by coprecipitation method. SEM observations indicated that the average grain size of nanopowders was about 16–30 nm and the average grain size of the ceramics was between 200 nm and 1 μm. The grain boundaries of the ceramics were clean and no pores or impurities were detected. For 2‐mm‐thickness sample, the transmittance of the as‐fabricated 5 at.% Nd: CaF2 ceramic at 1200 nm was about 85%. The absorption coefficient and emission intensity of the Nd: CaF2 ceramics were measured and discussed. From the Nd: CaF2 ceramics fluorescent spectra and the decay curves, it was found that the fluorescent quenching effect became more evident with the increase in the Nd3+ ions‐doped concentration.  相似文献   

7.
Highly transparent (Y0.95?xGdxEu0.05)2O3 (= 0.15–0.55) ceramics have been fabricated by vacuum sintering at the relatively low temperature of 1700°C for 4 h with the in‐line transmittances of 73.6%–79.5% at the Eu3+ emission wavelength of 613 nm (~91.9%–99.3% of the theoretical transmittance of Y1.34Gd0.6Eu0.06O3 single crystal), whereas the = 0.65 ceramic undergoes a phase transformation at 1650°C and has a transparency of 53.4% at the lower sintering temperature of 1625°C. The effects of Gd3+ substitution for Y3+ on the particle characteristics, sintering kinetics, and optical performances of the materials were systematically studied. The results show that (1) calcining the layered rare‐earth hydroxide precursors of the ternary Y–Gd–Eu system yielded rounded oxide particles with greatly reduced hard agglomeration and the particle/crystallite size slightly decreases along with increasing Gd3+ incorporation; (2) in the temperature range 1100°C–1480°C, the sintering kinetics of (Y0.95?xGdxEu0.05)2O3 is mainly controlled by grain‐boundary diffusion with similar activation energies of ~230 kJ/mol; (3) Gd3+ addition promotes grain growth and densification in the temperature range 1100°C–1400°C; (4) the bandgap energies of the (Y0.95?xGdxEu0.05)2O3 ceramics generally decrease with increasing x; however, they are much lower than those of the oxide powders; (5) both the oxide powders and the transparent ceramics exhibit the typical red emission of Eu3+ at ~613 nm (the 5D07F2 transition) under charge transfer (CT) excitation. Gd3+ incorporation enhances the photoluminescence and shortens the fluorescence lifetime of Eu3+.  相似文献   

8.
Novel transparent Er3+ doped oxyfluoride glass-ceramics containing Ba4Gd3F17 nanocrystals were prepared by melt quenching followed by heat treatment of as-prepared glasses. The phase composition and microstructure were investigated by X-ray diffraction (XRD), scanning electron microscopy (SEM) and transmission electron microscopy (TEM). Intense upconversion luminescence (UCL) was detected. Longer characteristic decay times and splitting of the luminescence bands compared to the precursor glass indicated the incorporation of erbium ions in the crystalline phase. The spectroscopic properties of glass ceramics were compared with single phase cubic and rhombohedral Ba4Gd3F17 ceramics. The unit cell parameters and atomic positions in the rhombohedral phase were calculated using Rietveld refinement. The local environment of Er3+ and the phonon energy of both polymorphs were analyzed using luminescence and Raman spectroscopy. In the glass ceramics, a phase transition from distorted metastable fluorite to ordered rhombohedral Ba4Gd3F17 was observed and resulted in the enhancement of the efficiency of UCL.  相似文献   

9.
High optical quality Nd3+ and Ce3+ co-doped SrF2 (Nd3+, Ce3+: SrF2) transparent ceramics were fabricated successfully by a simple hot-pressing (HP) method. The phase composition, in-line transmittance, absorption and emission spectra, as well as the detailed energy transfer of Nd3+ and Ce3+ were investigated. In addition, the Judd- Ofelt (J-O) theory was adopted to evaluate the luminescence property. The SrF2 transparent ceramic samples exhibited excellent optical properties, up to 82 % at 400 nm and 92.5 % at 1054 nm. The fracture surface of SrF2 transparent ceramic proved nearly dense microstructure and EDS results demonstrated uniform doping. The addition of cerium ions changed the crystal field environment of neodymium ions and shifted the emission peak to higher wavelengths at 796 nm excitation. Moreover, through the energy transfer process of Ce3+ to Nd3+, the occurrence of concentration quenching phenomenon was avoided under 298 nm excitation, and the emission cross-section of 4F3/24I11/2 increased to 3.1 × 10−20 cm2.  相似文献   

10.
《Ceramics International》2023,49(4):5770-5775
In this work, MgAl2O4: Cr3+ transparent ceramics have been synthesized by the hot press sintering techniques, and the effect of the sintering aid Gd2O3 and its content on the densification, microstructure, and optical, photoluminescence was studied and discussed. The relative density reached 99.29% with 0.8 wt% Gd2O3 as a sintering aid, and the optical transmittance at 686 nm and 1446 nm were approximately 76%. As Gd2O3 content continued to increase, the grain size of the ceramics became smaller and uniform, accompanied by some pores with the size of ~1 μm. The ceramics with 4.0 wt% Gd2O3 showed a higher transmittance, of 82% at 1446 nm. Additionally, Gd2O3 was helpful for Cr3+ in the sites of octahedral symmetry, which increased the quantum yield. The quantum yield of MgAl2O4: Cr3+ with 0.8 wt% Gd2O3 was about 0.175, which was 36% higher than that of ceramic without Gd2O3. In short, the sintering aid Gd2O3 not only contributed to improving the densification, homogenizing the grain size, and heightening the optical transmittance but also enhanced the quantum yield of Cr3+.  相似文献   

11.
Tm3+ doped KF–YbF3 nanocrystals were synthesized by a hydrothermal method using oleic acid as a stabilizing agent at 190 °C. The influence of Gd3+ and Sm3+ content on the phase structure and upconversion (UC) emission of the final products was investigated by X-ray diffraction (XRD), transmission electron microscopy (TEM) and UC spectra. XRD analyses and TEM observations evidence that the phase and size of the as prepared Tm3+ doped KF–YbF3 nanocrystals are closely related to the Gd3+ doping content. Without Gd3+ impurity, the undoped nanocrystals crystallize in orthorhombic KYb2F7 with an average diameter of 42 nm. When the Gd3+ doping is below 10 mol%, the orthorhombic KYb2F7 nanocrystals grow up. However, with Gd3+ addition beyond about 30 mol%, the complete phase transformation from orthorhombic KYb2F7 to cubic KGdF4 occurs in the final products. Under the excitation of a 980 nm laser diode, the as prepared Tm3+ doped nanocrystals exhibit strong near-infrared UC emission at 800 nm. Particularly, the intensity of high energy UV and blue UC emissions of Tm3+ ions in Tm3+ doped KYb2F7 nanocrystals are selectively reduced compared to the NIR emission at 800 nm by co-doping a small amount of Sm3+ ions into the host matrix. Possible dynamic processes for UC emissions in Tm3+ doped nanocrystals are discussed in detail.  相似文献   

12.
《Ceramics International》2023,49(5):7524-7533
YAG:Sm3+ (3–15 at.%) transparent ceramics, a promising cladding material for suppressors of parasitic oscillations at 1064 nm of YAG:Nd3+ lasers, have been prepared by solid-state reactive sintering at 1725 °C. The effect of samarium ions concentration on the microstructure and optical properties of YAG:Sm3+ sintered ceramics was studied for the first time. The solubility limit of samarium ions in the garnet matrix was found to lie within the range of 9–11 at.%. The spectroscopic characterization of YAG:Sm3+ (3–15 at.%) ceramic samples showed that the absorption coefficients corresponding to Sm3+ ions transitions increased linearly with increasing Sm3+ doping. Also, the increase in the concentration of Sm3+ ions contributes to the increase in the intensities of the satellites, leading to the broadening of the main spectral lines and implicitly to the increase of the absorption coefficient around 1064 nm. It was shown that YAG:Sm3+ ceramics doped with 9 at.% Sm3+ ions possess optical losses of 0.07 cm?1 at 808 nm and an optical absorption coefficient of 4.45 cm?1 at 1064 nm. The concentration dependence of the 4G5/2 level decay confirmed that the luminescence extinction is due to the energy transfer between the Sm3+ ions through cross-relaxation processes. All these results show that highly-doped YAG:Sm3+ (9 at.%) ceramics could be the best candidate for parasitic oscillation suppression in high-power YAG:Nd3+ lasers at 1064 nm.  相似文献   

13.
The effect of green bodies’ mesostructure on the porosity, optical properties and laser performance of reactive sintered Y3Al5O12:Nd3+ transparent ceramics was studied. Only minor changes in microstructure were revealed for green bodies without annealing and those annealed at 600, 800, 1000 °C, while average pore size increases to 140 nm for sample annealed at 1200 °C. Y3Al5O12:Nd3+ ceramics sintered at 1750 °C for 10 hours possess significant differences in the final porosity, optical and laser characteristics. Despite all green bodies exhibit a similar phase evolution and sintering behavior on heating, the differences appear in the final stage, when the latest percentage of porosity is removed. The green bodies annealed at 600 °C have an optimal mesostructure from the standpoint of uniform densification. Y3Al5O12:Nd3+ ceramics prepared using these green bodies exhibit porosity ≤0.001 vol% and yield efficient laser emission at 1.06 μm with slope efficiency as high as 67% in quasi-continuous pumping at 807 nm.  相似文献   

14.
Ultra-highly transparent ZrO2-doped Yb3+: Y2O3 ceramics were prepared by slip casting and vacuum pressureless sintering and the transmittance reached the highest value of 80.9% for the sample doped with 8.0 at% Yb3+. There are three main absorption peaks at 905, 950, and 976 nm, corresponding to the transition from the lowest level of field splitting of 2F7/2 crystal to every splitting energy levels of 2F5/2 crystal field. We analyzed the absorption and emission spectra of transparent Yb3+: Y2O3 from the energy level structure of Yb3+, and the transmission, absorption, and emission spectra were systematically studied. There are three main absorption peaks at 905, 950, and 976 nm and four emission peaks at 1076, 1031, 1013, and 977 nm, respectively. The emission peaks at 977 and 1013 nm broaden and vanish for 8.0 and 10.0 at% Yb3+-doped Y2O3, which may be related to the change of Y2O3 crystal field caused by high concentration.  相似文献   

15.
3 at.% Eu3+‐doped La2?xGdxZr2O7 (x = 0–2.0) transparent ceramics were fabricated by vacuum sintering. The effect of Gd content on crystal structure, in‐line transmittance, and luminescence property of the ceramics were investigated. The ceramics are all cubic pyrochlore structure with high transparency. The cut‐off edge of the transmittance curve of the ceramics varied with Gd content and was also affected by the annealing process. The luminescence intensity became stronger for the ceramics annealed in air. As Gd content increased, the energy band structure as well as the luminescence behavior of the ceramics was changed; in addition, the symmetry of the crystal lattice reduced, resulting in the shift of the strongest luminescence peak from 585 nm to around 630 nm.  相似文献   

16.
Transparent Nd3+,Gd3+-codoped SrF2 laser ceramic was fabricated by a single-crystal ceramization (SCC) technique, and the fluorescence properties were also characterized. The results indicated that the SCC process would lead to reducing fluorescence properties of ceramic by re-clustering small amount of Nd3+ ions. In this study, the re-clustering of Nd3+ ions were addressed by a simple thermal drive-induced grains regrowth (TDIGR) treatment. The properties of the Nd3+,Gd3+-codoped SrF2 laser ceramic undergo the TDIGR were improved and close to precursor Nd3+, Gd3+-codoped SrF2 single crystal. Meanwhile, the transmittance of ceramic (Taverage@400-1400nm ~ 92%) was hardly affected by the TDIGR treatment. Therefore, we have reasons to believe that the combination of SCC and TDIGR is a suitable approach to obtain high optical quality neodymium, buffer ion-codoped alkaline-earth fluoride (Nd3+,B3+-codoped MF2) laser ceramics.  相似文献   

17.
Calcium oxide (CaO) as sintering additive was first used to fabricate La0.4Gd1.6Zr2O7 transparent ceramics by a simple solid-state reaction and one-step vacuum sintering method. The effects of CaO dopant amount on the densification, as well as sintering behaviors and microstructure evolution of the as-fabricated La0.4Gd1.6Zr2O7 ceramics, were systematically investigated. Under the different sintering temperatures, the relationships during the sintering process between grain growth and zpore elimination were analyzed as well. It was found that 0.1 wt% CaO doping can effectively control the rate of grain growth and promote densification dominated by surface diffusion. Furthermore, Ca2+ entered the lattice of La0.4Gd1.6Zr2O7 ceramics to accelerate ion diffusion and suppress grain boundary migration. With the introduction of 0.1 wt% CaO doping, the highly transparent La0.4Gd1.6Zr2O7 ceramics (T = 80.4% at 1100 nm) were successfully fabricated at the traditional sintering temperature (1850°C).  相似文献   

18.
In this article, we report on the fabrication and optical properties of highly transparent yttria ceramics for lasers active media with broadband gain profile. Laser synthesis method was used to produce Y2O3-based nanopowders doped with 1 mol.% Nd3+ or Yb3+ for these transparent ceramics. The additives of sesquioxides Lu2O3 and Sc2O3 were used along with ZrO2 to disorder the crystalline structure. The porosity and average grain size decrease with these additives and the emission bandwidths of Nd3+ (4F3/2  4I11/2) and Yb3+ (2F5/2  2F7/2) transitions widen to 40 and 60 nm, respectively. Laser operation with the slope efficiency of 29% was obtained in [(Yb0.01Lu0.24Y0.75)2O3]0.88(ZrO2)0.12 ceramic sample.  相似文献   

19.
To simplify the immobilized process of nuclear waste, synthetic Gd2Zr2O7 ceramic was employed to immobilize simulated An3+ (Nd3+) by spark plasma sintering (SPS) without any ion occupation or valence design. Sintering and characterization of immobilized simulated An3+ with various doping amounts were carried out. The effects of Nd2O3 content on the phase composition, active modes, micro-graph and density of the sintered ceramics were investigated. When the Nd2O3 doped amount reached up to 50 mol%, the raw peak of Nd2O3 existed. The sintered ceramics kept a single fluorite phase when Nd2O3 solubility achieved to 40 mol%. The sintered ceramics presented a well crystalline phase and the elements distributed evenly. In addition, as the Nd2O3 doped amount increase, the density and Vickers hardness values of Nd2O3 doped sample decrease.  相似文献   

20.
High-optical-quality ternary [(Y1-xGdx)0.99Dy0.01]2O3 (x = 0 and 0.4) ceramics were successfully fabricated by vacuum sintering with in-line transmittances of 71.4%-75.1% at 574 nm, the wavelength of Dy3+ emission (the 4F9/2 → 6H13/2 transition). Substitution of Gd3+ for Y3+ significantly affected the photoluminescent and scintillant properties of the ceramics. Gd3+ addition effectively increased lattice parameters and theoretical densities of the ceramic samples; this contributed to enhanced X-ray absorption coefficients. Both [(Y1-xGdx)0.99Dy0.01]2O3 (x = 0 and 0.4) ceramics displayed typical Dy3+ emissions from 4F9/2 → 6HJ (J = 15/2, 13/2, 11/2) transitions under UV and X-ray irradiations. By incorporating Gd3+ into the lattice, a stronger excitation peak of Gd3+ due to internal f-f transitions relative to Dy3+ was observed at 276 nm; subsequent ceramics obtained a sharper PL intensity and a warmer hue via effective energy transfer from Gd3+ to Dy3+. Using a Gd3+ dopant generally reduces the total photoluminescence/photoluminescence excitation intensities and light output; it also delays the lifetime and afterglow of the transparent ceramics.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号