首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Continuous polyacrylonitrile nanofiber yarns were fabricated by the homemade multiple conjugate electrospinning apparatus, and the principle of yarn spinning was studied. The effects of the applied voltage, flow rate, spinning distance, and funnel rotary speed on the diameter and mechanical properties of nanofiber yarn were analyzed. The diameter of the nanofibers decreased with increasing applied voltage and the flow rate ratio of the positive and negative needles (FP/FN), whereas the diameter of nanofibers increased with increasing overall flow rate and needle distance between the positive and negative. Subsequently, the diameter of the yarns increased first and then decreased with increasing applied voltage, FP/FN, and needle distance. However, the diameters of the yarns increased dramatically and then remained stable with increasing overall flow rate. The nanofibers were stably aggregated and continuously bundled and then uniformly twisted into nanofiber yarns at an applied voltage of 20 kV, an overall flow rate of 6.4 mL/h, a needle distance of 18.5 cm, and an FP/FN value of 5:3. With increasing funnel rotary speed, the diameters of the nanofibers and yarns decreased, whereas the twist angle of the nanofiber yarns gradually enlarged. Meanwhile, an increase in the twist angle brought about an improvement in the yarn mechanical properties. Nanofiber yarns that prepared showed diameters between 70 and 216 μm. Nanofiber yarns with a twist angle of 65° showed a tensile strength of 50.71 MPa and an elongation of 43.56% at break, respectively. © 2013 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2014 , 131, 40137.  相似文献   

2.
Nanofiber yarns with twisted and continuous structures have potential applications in fabrication of complicated structures such as surgical suture yarns, artificial blood vessels, and tissue scaffolds. The objective of this article is to characterize the tensile fatigue behavior of continuous Polyamide 66 (PA66) nanofiber yarns produced by electrospinning with three different twist levels. Morphology and tensile properties of yarns were obtained under static tensile loading and after fatigue loading. Results showed that tensile properties and yarn diameter were dependent on the twist level. Yarns had nonlinear time‐independent stress–strain behavior under the monotonic loading rates between 10 and 50 mm/min. Applying cyclic loading also positively affected the tensile properties of nanofiber yarns and changed their stress–strain behavior. Fatigue loading increased the crystallinity and alignment of nanofibers within the yarn structure, which could be interpreted as improved tensile strength and elastic modulus. POLYM. ENG. SCI., 55:1805–1811, 2015. © 2014 Society of Plastics Engineers  相似文献   

3.
Higher ordered structures of nanofibers, including nanofiber‐based yarns and cables, have a variety of potential applications, including wearable health monitoring systems, artificial tendons, and medical sutures. In this study, twisted assemblies of polyacrylonitrile (PAN), polyvinylidene fluoride trifluoroethylene (PVDF‐TrFe), and polycaprolactone (PCL) nanofibers were fabricated via a modified electrospinning setup, consisting of a rotating cone‐shaped copper collector, two syringe pumps, and two high voltage power supplies. The fiber diameters and twist angles varied as a function of the rotary speed of the collector. Mechanical testing of the yarns revealed that PVDF‐TrFe and PCL yarns have a higher strain‐to‐failure than PAN yarns, reaching 307% for PCL nanoyarns. For the first time, the porosity of nanofiber yarns was studied as a function of twist angle, showing that PAN nanoyarns are more porous than PCL yarns. © 2017 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2017 , 134, 44813.  相似文献   

4.
In this article, continuous PA6/single‐wall nanotubes (SWNTs) nanofiber yarns were obtained by a special electrospinning method; the mechanical and electrical properties and the electric resistance‐tensile strain sensitivity of the as‐spun yarns were specially studied. The main parameters in the spinning process were systematically studied. Scanning electron microscope images and mechanical tests indicated that the optimum parameters for the electrospinning process were operation voltage = 20 kV, spinning flow rate = 0.09 ml/h, and winding speed = 150 rpm. Transmission electron microscopy images showed that the SWNTs have aligned along the axis of the nanofibers and thus formed a continuous conductive network which greatly improved the electrical conductivity of the PA6 nanofiber yarn and the percolation threshold was about 0.8 wt%. The electric conductivities of the yarns at different stretching ratios were also measured with a custom‐made fixture attached to the high‐resistance meter, and for a given carbon nanotube concentration, the conductivity changes almost linearly with the tensile strain applied on the yarns. POLYM. ENG. SCI., 54:1618–1624, 2014. © 2013 Society of Plastics Engineers  相似文献   

5.
In this study, the continuous twisted PLLA yarns were produced using an electrospinning device consists of two oppositely charged nozzles. The electrospinning process was performed at different twist rates. The electrospun twisted yarns were drawn at different extension ratios of 50% and 100% and their morphological and mechanical properties of post‐drawn yarns were investigated. The morphological studies at all twist rates shown that uniform and smooth fibers without any bead were formed. Increasing the twist rate up to 240 rpm resulted to a decrease in the average diameter of the fibers in the yarn structure. After uniaxially drawing of the yarns, the average diameter of fibers and thus the yarn diameter decreased. The post‐drawing process enhanced the crystallinity of the fibers in the yarn structure. Furthermore, by increasing the extension ratio, the tensile strength and modulus of yarns increased, while the elongation at break (%) decreased. POLYM. ENG. SCI., 58:1091–1096, 2018. © 2017 Society of Plastics Engineers  相似文献   

6.
In this work, a spinning metal wire collector was employed to continuously collect polyacrylonitrile (PAN) nanofibers produced by a disc fiber generator and coil them around a polyethylene terephthalate (PET) yarn. The obtained composite yarns exhibited a core/shell structure (PET yarn/PAN nanofibers) with nanofibers orderly arranged on the surface of the PET yarn. The electric field analysis showed that the position of metal wire had insignificant effect on the formed electric field and high intensity electric field was formed at the disc circumferential area, which provided a constant electric field for the production of uniform nanofibers. The spinning solution, spinning speed of metal wire, and winding speed were found to play an important role in producing good quality nanofiber yarns, in terms of morphology, strength, and productivity. Pure nanofiber yarns were obtained after dissolving the core yarns in a proper solvent. This method has shown potential for the mass production of nanofiber yarns for industrial applications. POLYM. ENG. SCI., 54:1495–1502, 2014. © 2013 Society of Plastics Engineers  相似文献   

7.
Core-sheath nanofibrous yarns were obtained through electrospinning of polyamide 6 (PA6) solution containing different concentrations of multi-wall carbon nanotubes (MWNTs) as sheath and PVA multifilament as the yarn core. By dissolving PVA, for obtaining conductive hollow nanofibrous PA6/MWNTs yarn, two types of porosity could be obtained including hollow central tube due to the structure of hollow yarn and nano-porous areas embedded in electrospun nanofibers. SEM results showed that the diameters of nanofibers were varying in the range of 103–145 nm obeying MWNTs concentrations and TEM results revealed that the MWNTs were embedded in nanofiber matrix as straight and aligned form. DSC analysis showed that electrospinning process caused the formation of less-ordered γ phase in nanofibers. The electrical conductivity of yarns increased from 10?13 S m?1 to 2.4?×?10?6 S m?1 with increasing the concentration of nanotubes from 0 wt.% to 7 wt.%.  相似文献   

8.
The small-angle X-ray scattering measurements during tensile deformation have been performed for studying the structure and mechanical property relationships of twisted carbon nanotube (CNT) yarns. The tensile strength distribution and the diameter changes during tensile deformation have also been measured. The orientation distribution of the CNTs in the yarn has been determined and its changes during tensile deformation have been related to the variation of the tensile modulus with the twist angle. The tensile modulus and Poisson’s ratio of the yarns decreased with increasing twist angle, whereas the tensile strength of the yarn showed a maximum at the twist angle of 25°. At this twist angle, the distribution width of the tensile strength was minimum indicating the higher uniformity of the yarn structure.  相似文献   

9.
In this study PAN nanofibrous yarn was produced by two‐nozzle conjugated electrospinning method. The nanofibrous yarns were drawn continuously in boiling water with drawing ratios of 1, 2, 3, and 4. The morphology of drawn yarns was investigated by scanning electron microscopy and tested for tensile properties as well as untreated yarn. The results showed that the nanofiber alignment in the yarn axis direction, the tensile strength, and tensile modulus of yarn increases as a result of drawing while the tensile strain and work of rapture decrease. X‐ray diffraction patterns of the produced yarns were analyzed as well. It was found that crystallinity index increases as the draw ratio increases. © 2011 Wiley Periodicals, Inc. J Appl Polym Sci, 2011  相似文献   

10.
Electrospun nanofibrous yarns of shape memory polyurethane (SMPU)-based nanofibers were successfully prepared. The electrospun yarns were analyzed to assess the dependence of mechanical and shape memory properties on the yarn twist angle. The yarn with a 60° twist angle has high compactness and density, leading to increased tensile strength, elastic modulus, and strain energy. In addition, this yarn shows a significant improvement in the shape memory recovery stress compared with the non-twisted SMPU nanofibers. Moreover, thermal stimuli allowed for the 60° twisted yarn to lift a load that is 103 times heavier than itself. This yarn had a shape recovery stress of 0.61 MPa and generated a 7.95 mJ recovery energy. The results suggest the electrospun yarns could be used as actuators and sensing devices in the medical and biological fields.  相似文献   

11.
This work aims at fractography of polyamide 66 nanofiber yarns. The yarns are produced with three twist levels via electrospinning. In order to study the fracture modes of nanofiber yarns, fatigue, and static tensile tests including monotonic, low cycle fatigue, and postcyclic monotonic tensile tests are performed. It is observed that the catastrophic failure of yarns is associated with axial splitting in the three categories. The nanofibers within the yarn structure show a ductile fracture and buckle after tensile stress release. In comparison of postcyclic monotonic tensile tests with other categories, nanofibers show severe plastic buckling in response to release of the same applied force. Fractography studies reveal that twisting causes construction of a layered structure in the yarns which is similar to the ideal yarn structure as well. Applying cyclic loading causes the separation of these structural layers which is more considerable under higher number of cycles. © 2015 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2015 , 132, 41925.  相似文献   

12.
We investigated the effects of two different solvent types and three solution concentrations on the electrospinning of solid state polymerized polyamide 66 (SSP PA66) nanofiber yarns. Nanofiber yarns were electrospun from SSP PA66 solutions in formic acid and formic acid/chloroform (3/1), using two oppositely metallic spinnerets system. Scanning electron microscopy (SEM) and X‐ray diffraction (XRD) were employed to characterize the morphology and properties of the nanofibrous yarns. Experimental results show that adding chloroform to formic acid as a binary solvent increases viscosity of polymer solution and the nanofibers diameter significantly. XRD patterns reveal that the presence of chloroform affects the crystallinity and the mechanical properties of the produced nanofibrous yarns. PA66 nanofiber yarn from 10 wt % formic acid/chloroform (3/1) solution was successfully electrospun with strength and modulus of 120.16 MPa and 1216.27 MPa respectively. It is also shown that the solution concentration has a significant effect on the modulus of the nanofibers yarns. © 2012 Wiley Periodicals, Inc. J Appl Polym Sci, 2012  相似文献   

13.
《合成纤维》2017,(9):19-23
通过对233 dtex/36 f工业丝的纺丝、初捻、复捻、帘子布织造等工序的生产实践,探讨熔体黏度、纺丝组件、纺丝温度、热辊温度、初复捻锭速、尼龙钩质量、织造车速、引纬参数、边丝处理等参数对生产控制和产品质量的影响。结果表明:熔体相对黏度控制在78~80,纺丝温度控制在302℃,提高纺丝组件过滤精度,严格控制热辊波动范围,可以提高233 dtex/36 f工业丝的质量均匀性;初捻锭速选用5 000 r/min、尼龙钩选用235 mg,复捻锭速选用4 500 r/min、尼龙钩选用250 mg,捻线强力保持率能控制在94%以上;织造车速控制在600~650 r/min时,调整优化引纬参数,引纬初始位置延长5°,引纬到达位置提前5°,主辅喷嘴气压均控制在0.45 MPa,对边丝进行特殊倒筒处理,能够提高白坯布整体质量;工艺优化后,细旦浸胶帘子布质量得到改善,挑出率提高18.5%,满足了市场需求。  相似文献   

14.
A novel double‐nozzle air‐jet electrospinning apparatus was developed to fabricate nanofibers on a large scale. The distribution of the electric field at different nozzle distances was simulated to analyze the jet path, productivity, and deposition area of nanofiber webs and the nanofiber morphology. Our experiments showed that the bubbles usually ruptured intermittently on the top surface of the two nozzles and the jets traveled in a straight path with a high initial velocity. A continuous and even thickness of the nanofiber webs were obtained when the nozzle distances was less than 55 mm. At nozzle distances of 55 mm, the received fibers were thin with the lowest standard deviation. Experimental parameters involving the applied voltage, collecting distance, and air flow rate were also investigated to analyze the nanofiber morphology at a nozzle distance of 55 mm. The results show that the nanofibers presented a finer and thinner diameter at an applied voltage of 36 kV, a collecting distance of 18 cm, and an air flow rate of 800 mL/min. The nanofiber production of this setup increased to nearly 70 times that with a single‐needle electrospinning setup. On the basis of the principle of this air‐jet electrospinning setup, various arrangements of multinozzle electrospinning setups could be designed for higher throughput of nanofibers. © 2013 Wiley Periodicals, Inc. J. Appl. Polym. Sci., 2014 , 131, 40040.  相似文献   

15.
Nanofiber yarn was continuously manufactured by a needleless melt‐electrospinning method. The suction wind speed was the most important factor influencing the final fiber diameter and determining whether the fibers could be gathered into a well‐aligned strand. The twisting process of the yarn was performed by the adjustment of ratio of the speed of the collecting roller to the speed of the rotating disk. The results show that the higher the assisting suction wind speed was, the smaller the fiber diameter was. The smallest average fiber diameter of 440 nm was obtained at a suction wind speed of 30 m/s. Furthermore, the smaller the ratio of the speed of the collecting roller to the speed of the rotating disk was, the larger the twisting angle of the prepared yarn was. The largest twisting angle obtained in this study was 43 ° at the greatest ratio of the speed of the collecting roller to the speed of the rotating disk. The X‐ray diffraction results show that the alignment degree of the nanofiber twisting and the crystallinity increased with increasing twisting angle. © 2017 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2017 , 134, 44820.  相似文献   

16.
The effects of fiber structure on the process of photodegradation are controversial in the field. We tested polypropylene fibers of various form for their effects on photodegradation. Fiber grade polypropylene granules were spun into partially oriented multifilament yarns at a spinning speed of 2000 m min?1. The yarns were drawn using a draw‐twist unit. Yarns were exposed to ultra‐violet radiations in a covered open air chamber for different periods of time under two different sources of emissions (UVA; λ > 300 nm and UVC; λ = 254 nm). The samples were examined by Fourier transform infrared spectroscopy, mechanical testing, differential scanning calorimetry, microscopy, and density measurements. In photodegradation process, the drawn filaments had a longer induction time than undrawn ones. The mechanical properties of the undrawn yarns deteriorate faster than the drawn yarns. During the early periods of degradation helical content increases considerably, while the density fluctuates and increases. The degradation rate under UVC radiation was faster than under UVA radiation because of the higher energy of the UVC radiation. The upper photostability of the drawn yarns compared to the undrawn ones was due to the higher crystalline fraction and greater molecular orientation in the drawn yarn. © 2017 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2018 , 135, 45716.  相似文献   

17.
A modified air-jet electrospinning (MAE) setup was demonstrated for contributing to the large-scale nanofibers production. With this single nozzle air-jet electrospinning device, the productivity of nanofibers can be increased more than forty times as compared with using the single-needle electrospinning (SNE) setup. When compared with other needle-less electrospinning setups, the benefits of this setup include ability to keep stable concentration of electrospun solution and to produce more uniform and thinner fibers, controlling of the jets formed speed and position, higher throughput, lower critical voltage, easier assembling, simpler operation, and so on. Four different parts of the fiber generator were, respectively, charged as electrospun electrodes to produce fibers. The distributions of the electric field with different electrodes were simulated and investigated for explaining the experimental results including the fibers productivity, the deposition area of nanofiber mats, as well as the surface morphology of the fibers. When the whole nozzle was charged, as compared with charging other electrodes, the MAE system produced thinner fibers with larger standard deviation on a much larger scale. By reduction of charged area, the received fibers presented lower productivity and thicker diameter with lower standard deviation. Especially, when a half of the nozzle was charged, the deposition area of nanofiber mats was larger than charging other electrodes. Besides, when a half of the nozzle was charged, the influences of electrospinning parameters such as applied voltage, collecting distance and the flow rate of air on nanofibers morphology were also investigated. Furthermore, based on this spinning unit, multi-nozzle air-jet electrospinning setup can be designed for larger production of nanofibers.  相似文献   

18.
The continuous nanofiber yarns of poly(L ‐lactide) (PLLA)/nano‐β‐tricalcium phosphate (n‐TCP) composite are prepared from oppositely charged electrospun nanofibers by conjugate electrospinning with coupled spinnerets. The morphology and mechanical properties of PLLA/n‐TCP nanofiber yarns are characterized by scanning electron microscope, transmission electron microscope, and electronic fiber strength tester. The results show that PLLA/n‐TCP nanofibers are aligned well along the longitudinal axis of the yarn, and the concentration of PLLA plays a significant role on the diameter of the nanofibers. The thicker yarn of PLLA/n‐TCP composite with the weight ratio of 10/1 has been produced by multiple conjugate electrospinning using three pairs of spinnerets, and the yarn has tensile strength of 0.31cN/dtex. A preliminary study of cell biocompatibility suggests that PLLA/n‐TCP nanofiber yarns may be useable scaffold materials. © 2007 Wiley Periodicals, Inc. J Appl Polym Sci 2008  相似文献   

19.
Xuefen Wang  Kai Zhang  Hao Yu  Yanmo Chen 《Polymer》2008,49(11):2755-2761
Continuous polymer nanofiber yarns were manufactured by self-bundling electrospinning method. Compared with typical electrospinning setup, the special difference in this method was that a grounded needle tip was used to induce the self-bundling of polymer nanofibers at the beginning of electrospinning process. Four kinds of polymer self-bundling yarns, poly(3-hydroxybutyrate-co-3-hydroxyvalerate) (PHBV), polyacrylonitrile (PAN), poly(l-lactic acid) (PLLA) and poly(m-phenylene isophthalamide) (PMIA), were prepared successfully by using this self-bundling electrospinning method. Good alignment of polymer nanofibers in self-bundled yarns was confirmed by SEM observation. It was found out that the conductivity of the polymer solution was crucial to achieve stably continuous self-bundled fiber yarns. A possible mechanism for the self-bundling formation of align nanofiber yarn was proposed.  相似文献   

20.
Poly(L ‐lactic acid) (PLA) filaments were spun by melt‐spinning at 500 and 1850 mm?1, and further drawn and heat‐set to modify the morphology of these PLA filaments. PLA yarns were characterized by wide‐angle X‐ray diffraction (WAXD) and sonic method. WAXD reveals that PLA yarns spun at 500 mm?1 are almost amorphous while the PLA filaments spun at 1850 mm?1 have about 6% crystallinity. This is different from PET filaments spun at the same speed that have almost no crystallinity. Both drawn‐ and heat‐set PLA filaments showed much higher crystallinity (60%) than do as‐spun fibers produced at 500 and 1850 mm?1 speed, which is also higher than the usual heat‐set PET yarns. It appears that crystalline orientation rapidly reaches a value in the order of 0.95 at 1850 mm?1 and that drawn‐ and heat‐set yarns have almost the same crystalline orientation values. Molecular orientation is relatively low for as‐spun PLA yarn, and molecular orientation increased to ~0.5 after drawing or heat–setting or both. © 2006 Wiley Periodicals, Inc. J Appl Polym Sci 101: 1210–1216, 2006  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号