首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 234 毫秒
1.
静电除尘器数值模拟   总被引:7,自引:1,他引:6       下载免费PDF全文
龙正伟  冯壮波  姚强 《化工学报》2012,63(11):3393-3401
针对静电除尘器建立了其流场、电晕电场、颗粒荷电与运动的三维数值模型,流场采用时均Navier-Stokes方程和雷诺应力标准湍流模型,电晕电场采用非结构有限容积法,颗粒运动采用拉格朗日方法,颗粒荷电采用对荷电率方程进行积分的方法,颗粒湍流扩散采用随机轨道模型,颗粒的粒径分布采用Rosin-Rammler分布描述,模拟计算了实验电除尘器电场分布、流场分布以及颗粒运动,极板上的电流密度分布计算值与实验值符合良好,颗粒向极板运动的速度在距离极板面5 mm处的实验值与计算值也符合良好,在模型验证基础上,进一步分析了电除尘器内部流场的分布、颗粒的荷电特性与运动轨迹以及各个粒径的除尘效率。  相似文献   

2.
荷电器内煤粉荷电颗粒运动轨迹仿真   总被引:4,自引:0,他引:4  
从单个荷电颗粒的受力分析入手,建立了线筒型荷电器内适合FLUENT软件求解的单个煤粉颗粒运动轨迹的数学模型.模型涉及的方程包括:颗粒荷电方程、电场与电荷守恒方程、气体质量与动量守恒方程、颗粒质量与动量方程等.根据模型,利用FLUENT软件对荷电器中荷电颗粒的运动轨迹进行模拟,通过用户自定义函数-UDF编程引入电场力,最终得到不同颗粒粒径、荷电电压、射流流速下的运动轨迹仿真,并得出规律性结论.  相似文献   

3.
李金  王军锋  徐惠斌  郑高杰  孟新 《化工进展》2021,40(3):1300-1306
静电喷雾广泛应用于工业各个领域,如静电喷涂、静电雾化燃烧、静电雾化除尘等,其应用效果与喷雾荷电特性密切相关。为获得更佳荷电效果,本文探究了电晕荷电过程中感应电流对液滴真实荷电电流的影响,通过改变荷电电压、电极间距、电极环直径及液体流量等,实验研究了各因素变化对喷雾荷质比、电荷衰减及液滴粒径的影响。结果表明:相比于感应荷电,电晕荷电过程不稳定但能获得更佳的荷电效果,液滴荷质比随荷电电压的增加而先减小后增大,随电极环直径的增加而先增大后减小,随电极间距的增大而增大,电极环直径80mm,电极间距40mm能获得最佳荷电效果;荷电液滴带电量会随输运距离增加而泄漏衰减,相同距离下液滴通过电晕放电带有电荷后衰减更快;液滴带电后能够降低液体表面张力,随着液滴荷电量的增加,雾化液滴粒径有所降低。  相似文献   

4.
徐纯燕  常景彩  王翔  张静  崔琳  张波  马春元 《化工学报》2016,67(10):4446-4454
火电厂大气污染物排放标准日趋严格,湿式静电除尘器作为终端治理设备逐渐得到广泛应用。以亲水改性刚性极板为研究对象,建立了卧式湿式静电除尘器中试实验台,开展了PM2.5脱除特性的实验研究,研究了改性极板表面水膜增强颗粒物脱除效率的机制,考察了气体温度、停留时间、工作电压、初始浓度、冲洗水流量等主要运行参数对颗粒物脱除效率的影响规律。结果表明:改性刚性极板表面的纤维层可以减少反冲气流,减少颗粒的电迁移阻力;表面在小水量情况下亦可维持均匀稳定的水膜,水膜的存在抑制了反电晕和二次扬尘的发生,使得电晕电流高且水膜蒸发使烟气湿度提高,颗粒荷电量和电迁移速度提高,这两方面均提高了颗粒脱除效率。停留时间延长、工作电压提高均会引起颗粒脱除效率的增加,但颗粒物入口浓度、冲洗水流量对颗粒脱除效率影响不大。使用改性刚性极板的湿式静电除尘器可减少阳极冲洗水量,对粒径0.04~0.48 μm的颗粒有较高脱除效率,可在低电压下达到较高的颗粒物总脱除效率,具有较好的应用前景。  相似文献   

5.
为了探究非均匀电场下液滴的迁移机制,基于显微观测和数值模拟手段,研究了蜂窝-悬针电极间非均匀正弦交流电场液滴介电泳迁移规律。结果表明,随电压幅值增加,介电泳力增大,液滴速度、加速度、瞬时速度波动幅度和频率均显著增大;随电场频率增加,受液滴极化及驰豫特性的影响,液滴平均速度先增大后减小,电场频率为200 Hz时,平均速度最大;随油品黏度增加,液滴阻力增大,液滴瞬时迁移速度降低至1mm×s~(-1);随液滴粒径的增加,液滴荷电量增大,液滴粒径为2mm时,瞬时速度最高可达3mm×s~(-1)。液滴速度由于电场变化而随时间呈波动变化,电压幅值和液滴粒径对液滴瞬时速度波动幅度和频率存在显著影响,而电场频率和油相黏度则影响不大。相关结论为高效紧凑电聚结设备的研发及应用提供了理论依据。  相似文献   

6.
采用CFD软件Fluent提供的雷诺应力模型(RSM)和随机轨道模型,对环流式旋风除尘器内颗粒运动轨迹进行了数值模拟研究。预测了不同粒径颗粒的运动轨迹和分离效率。结果表明:颗粒在环流式旋风除尘器内的运动路径比常规除尘器长;特殊的流路设计,避免了常规旋风除尘器易产生的上灰环和颗粒短路问题,使除尘效率大幅度提高;除尘器内颗粒运动有较强的随机性,尤其对于小颗粒,受气流湍动影响显著。对不同粒径颗粒分离效率的预测表明:环流式旋风除尘器的分割粒径为1.25μm。  相似文献   

7.
火电厂大气污染物排放标准日趋严格,湿式静电除尘器作为终端治理设备逐渐得到广泛应用。以亲水改性刚性极板为研究对象,建立了卧式湿式静电除尘器中试实验台,开展了PM2.5脱除特性的实验研究,研究了改性极板表面水膜增强颗粒物脱除效率的机制,考察了气体温度、停留时间、工作电压、初始浓度、冲洗水流量等主要运行参数对颗粒物脱除效率的影响规律。结果表明:改性刚性极板表面的纤维层可以减少反冲气流,减少颗粒的电迁移阻力;表面在小水量情况下亦可维持均匀稳定的水膜,水膜的存在抑制了反电晕和二次扬尘的发生,使得电晕电流高且水膜蒸发使烟气湿度提高,颗粒荷电量和电迁移速度提高,这两方面均提高了颗粒脱除效率。停留时间延长、工作电压提高均会引起颗粒脱除效率的增加,但颗粒物入口浓度、冲洗水流量对颗粒脱除效率影响不大。使用改性刚性极板的湿式静电除尘器可减少阳极冲洗水量,对粒径0.04~0.48μm的颗粒有较高脱除效率,可在低电压下达到较高的颗粒物总脱除效率,具有较好的应用前景。  相似文献   

8.
在粉煤灰摩擦电选脱炭中,针对颗粒因带电荷质比小导致分选效率不高的问题,提出了一种新的非线性电场结构;在建立非线性电场二维模型和数学模型的基础上,对带电粉煤灰颗粒的运动过程进行了数值模拟,深入研究了颗粒荷质比、入射速度、电场强度和极板最小间距等因素对粉煤灰颗粒分离行为的影响,探索了非线性电场用于74μm粉煤灰颗粒高效脱炭的可行性,获得了操作参数的合理范围,为实现粉煤灰电选高效脱炭提供了新思路。  相似文献   

9.
基于计算流体力学,采用ANSYS软件的FLUENT模块,应用DPM离散相模型模拟了烟气和粉尘特性对静电除尘器除尘效率的影响规律,设计正交模拟优化模拟条件,并与生产现场情况对比. 结果表明,静电除尘器除尘效率随烟气流速增加而降低,随烟气湿度和粉尘真密度增加而增加,随烟气含尘浓度和粉尘粒径增加先增加后降低. 根据此规律,通过设计L16(45)正交模拟,得出烟气和粉尘特性对静电除尘器除尘效率的影响程度为粉尘粒径?烟气流速?粉尘真密度?烟气含尘浓度?烟气湿度;放电电极电压35 kV条件下,使静电除尘器处于最优状态的条件为烟气流速0.5 m/s、粉尘粒径40 ?m、烟气含尘浓度40 g/m3、烟气湿度25%、粉尘真密度4000 kg/m3,此工况下除尘率达99.9%.  相似文献   

10.
为了研究含尘气流中的颗粒物流速与粒径对惯性除尘器过滤效率的影响,采用Fluent软件对惯性除尘器的模型进行模拟分析。结果表明:同样的颗粒物,流速越大,惯性过滤器的过滤效果越差;固定流速为6 m/s时,粒径大于100μm的颗粒几乎全部被除尘器过滤,沉降在底面;粒径在100μm以内的颗粒部分不能被过滤;过滤物颗粒风速越大,粒径越小,则过滤效果越差。惯性除尘器适用于过滤大颗粒低流速的介质。  相似文献   

11.
Numerical and experimental simulations have been conducted for the time history of the diffusion charging process on the surface of aerosol particles by dense bipolar ions under continuum conditions. The range of conditions treated in the numerical simulations include positive-negative ion diffusion coefficient ratio from 0 to 1, aerosol particle radius from 0.1 to 10 μm, Debye ratio Rp/λD from 0 to 1 (equivalent to maximum charge density up to N1 = 1012 cm−3 for an ion temperature of 300 K), the major-to minor axis ratios of prolate spheroids, L, from 1 to 100. The experimental simulation was conducted by using a conductive dummy particle suspended by a thin shielded wire, and the charged particle deposition current flux was measured and the bipolar environments. Then the effect of particle surface charges was simulated by imposing an electric potential on the dummy particles. The results show that, (1) for small ion density (Rp/λD 10−2); the present results are in good agreement with model of Chang et al. (1978, 1983). (2) the aeroso particle charging speed and charging limit increase with increasing Debye ratio; (3) for larger Debye ratio, bipolar charging is faster than unipolar charging; (4) the effect of particle shape L is observed to be significantly influenced by Debye ratios: (5) the charging limit of the aerosol particle increases with L.  相似文献   

12.
The efficiency of separation for fine coal in a 150 mm dia. dense-medium hydrocyclone has been determined. The partition curves have been measured for particles in the size ranges −500 μm +425 μm, −300 μm +250 μm, −150 μm +125 μm and −90 μm +75 μm. The cut point for separation increases with a decrease in particle size and the efficiency of separation decreases as particle size decreases. The cut point of separation varies with medium specific gravity but the efficiency of separation does not. Neither the cut point of separation nor the efficiency of separation is greatly influenced by the cyclone feed rate, provided that overloading does not occur.

The results lead to an accurate predictive model for the calculation of the partition curve as a function of coal particle size and medium specific gravity. The model allows the prediction of the performance of a dense-medium hydrocyclone for the washing of fine coal having arbitrary washability characteristics and particle size distribution. The model is used to demonstrate that a two-stage dense-medium hydrocyclone configuration can significantly improve the cleaning performance for a coal that has good ash-liberation characteristics. However, multi-stage dense-medium hydrocyclones do not offer any real performance advantages for coal that has poor ash-liberation characteristics.  相似文献   


13.
Many numerical models have been developed to model the particle dynamics in the electrostatic precipitators in recent years. These models employ various particle charging models including field charging theory, diffusion charging theory and combined field-diffusion theory. These various charging models have different accuracy and require different amount of computational time. This work constructed a numerical model of the electrostatic precipitator and nine particle charging models were evaluated based on the existing experimental results. The results show that predictions of the constant charging models are higher than that of the non-constant models but differ little for the sub-micrometer particles. In the field-diffusion combining models, the one developed by Lawless (1996) should be the first choice relatively for numerical models of the particle dynamics in electrostatic precipitators.  相似文献   

14.
A computational fluid dynamics (CFD) model is carried out to describe the wire-plate electrostatic precipitator (ESP) in high temperature conditions, alming to study the effects of high temperature on the electro-hydrodynamic (EHD) characteristics. In the model, the complex interactions at high temperatures between the electric field, fluid dynamics and the particulate flow are taken into account. We apply different numerical methods for different fields, including an electric field model, Euler–Lagrange particle-laden flows model, and particle charging model. The effects of high temperature on ionic wind, EHD characteristics and collection effi-ciency are investigated. The numerical results show high temperature causes more significant effects of the ionic wind on the gas secondary flow. High viscosity of gas at high temperature makes particles follow the gas flow pattern more closely. High temperature reduces the surface electric strength, so that the mean electric strength weakens the space charging. On the contrary, there is an increase in the diffusion charging at high tem-perature compared with at low temperature. High temperature increases the ratio of mean drag force over mean electrostatic force acting on the particles which may contribute to a decline of collection efficiency.  相似文献   

15.

The effects of electrohydrodynamic (EHD) flow and turbulent diffusion on the collection efficiency of particles in a model ESP composed of the plates with a cavity were studied through numerical computation. Electric field and ion space charge density in the ESP were calculated by the Poisson equation of electric potential and the current continuity equation of ion space charge. The EHD flow field was solved by the continuity and momentum equations of gas phase, including the electrical body force induced by the movement of ions under the electric field. RNG k - l model was utilized to analyze turbulent flow. Particle concentration distribution was calculated from the convective diffusion equation of particle phase. As the ion space charge increased, the collection efficiency of charged particles increased because the electric potential increased over the entire domain in the ESP. The collection efficiency decreased as the EHD flow became stronger when the electrical migration velocity of charged particles was high. However, the collection efficiency could increase for the stronger EHD flow when the electrical migration velocity of charged particles was relatively lower. Also, the collection efficiency decreased as the turbulent diffusion of particles increased when the electrical migration velocity of particles was high. However, the collection efficiency could increase with the turbulent diffusion when the electrical migration velocity of particles was relatively lower.  相似文献   

16.
Equations relating particle size of aerosols to deposition by impaction, diffusion and sedimentation are applied to a previously established model of the guinea pig lung using a tidal volume of 4.44 cm3 and a respiratory rate of 60 breath min−1. These calculated deposition values are combined with measured values of nasal deposition to give an estimate of the particle deposition characteristics of the guinea pig respiratory tract. The nasopharyngeal-tracheobronchial (NP-TB) region removes 99% of unit density spherical particle 10 μm or more in diameter. Deposition in this region reaches a minimum of 10% at a particle diameter of 0.8 μm. For particles less than 0.8 μm, deposition increases because of diffusion. Deposition in the pulmonary region is about 17% for particle diameters from 0.08 to 4 μm. For typical polydisperse aerosols with mass median diameters above 1 μm, a greater fraction of the mass than of the count is deposited in the NP-TB region, while a smaller fraction of the mass than of the count is deposited in the pulmonary region. Aerosol clouds with mass median diameters less than 0.1 μm deposit a greater fraction of the count than of the mass in the NP-TB region and a smaller fraction of the count than of the mass in the pulmonary region.  相似文献   

17.
A predictive mathematical model based on particle convection and dispersion is presented for a liquid fluidized bed of coal particles. The numerical representation can follow transient behavior of liquid fluidized beds that contain a defined particle-size distribution. The calculations exhibited excellent agreement when compared to experimental transient pressure-drop data from a column containing particles of Illinois No. 6 bituminous coal in the size range of 20–120 μm. In addition, the model was used to simulate the effect of periodic (hourly) liquid velocity step changes on elutriation of small particles from a given particle-size distribution of 34.5–75.5 μm. For the situation tested, the calculations indicate that (a) the column does not reach a steady state between velocity changes and (b) that higher initial particle elutriation rates decay to lower values until no more particles elutriate from the column.  相似文献   

18.
Unipolar charging of fine aerosol particles by gaseous ions has been investigated in the presence of an electric field with a strength of E ≤ 4 kV/cm. It has been found that, when the ion conductivity of the medium in the charging zone is kept constant, variation of the ion mobility spectrum caused by change in the ion polarity or by addition of vapor of various liquids does not affect the particle charging. The measured mean particle charge for the particle radii, ranging from 0.05 to 1.5 μm, is shown to be in agreement with the theoretical data calculated as a sum of charges acquired by the particles owing to the diffusion and field charging mechanisms.  相似文献   

19.
An ionizing particle (alpha particle in the experiment) produces pairs of positive and negative ions along its trajectory until its kinetic energy is exhausted. The ion production field can be computed if the system geometry, disintegration rate and energy are known.Without an electric field, positive and negative ions are distributed isotropically around the trajectories of the ionizing particles. In this case aerosol particles are neutralized.When, however, a strong electric field is applied to the ion production field, it dominates ionic motion and creates regions where concentration ratios between positive and negative ions exist. In such a field, particles obtain charges depending on their size and dielectric constant, concentrations of positive and negative ions and electric field strength.Differential equations for impaction charging and diffusion charging were derived for this bipolar case. Solutions are for the most general cases when charging time is finite, and the initial charge is not zero.A simple electrostatic precipitator (ESP) was developed to test this equation for impaction charging. The test dust was lycopodium spores (d = 28 μm). The agreement with theory and experimental results was good. Differences at higher field strengths appear to be due to secondary ionization.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号