首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到10条相似文献,搜索用时 109 毫秒
1.
Many applications ranging from biomedical to aerospace have been proposed for the use of shape memory polymers (SMPs). To optimize SMPs properties for appropriately targeting such wide‐spreading application requirements, it becomes necessary to understand the structure/property relationships in SMPs. The literature was reviewed and the recent advances made in the development of SMPs were determined to establish guidelines for composition and structure considerations for designing SMPs with targeted chemical, physical, and shape memory (SM) properties. It was concluded that covalently crosslinked glassy thermosets appear to be better SMP candidates because of their intrinsically higher modulus, greater thermal and chemical stability, higher shape fixity and recovery, and possibly their longer cycle life. However, material design allows for reaching comparable or better properties for all classes of SMPs. This emphasizes that optimization of SMPs requires application‐specific molecular, structural, and geometrical design. Current techniques for improving stress recovery and cycle time, which compared to shape memory alloys are the two main limitations of SMPs, are extensively discussed. Understanding the relationships between the composition and structure of an SMP and its SM properties as well as its limitations enables one to better define the development areas for high performance SMPs. POLYM. ENG. SCI., 2008. © 2008 Society of Plastics Engineers  相似文献   

2.
Shape memory polymers (SMPs) are polymers which ''remember'' their original shape and can return to it after deformation, if an external stimulus—often an increased temperature – is applied. Some SMPs can be 3D printed, typically by fused deposition modeling (FDM). The most well-known SMP is poly(lactic acid), which belongs to the most often used materials in FDM 3D printing. There are; however, many more SMPs which can be 3D printed to combine the possibilities to prepare new, sophisticated shapes with the opportunity to restore these shapes after undesirable or intentional deformation. This review gives an overview of several 3D printable SMPs, their mechanical characteristics and their possible applications.  相似文献   

3.
D Zhang  WL Burkes  CA Schoener  MA Grunlan 《Polymer》2012,53(14):2935-2941
Thermoresponsive shape memory polymers (SMPs) are a type of stimuli-sensitive materials that switch from a temporary shape back to their permanent shape upon exposure to heat. While the majority of SMPs have been fabricated in the solid form, porous SMP foams exhibit distinct properties and are better suited for certain applications, including some in the biomedical field. Like solid SMPs, SMP foams have been restricted to a limited group of organic polymer systems. In this study, we prepared inorganic-organic SMP foams based on the photochemical cure of a macromer comprised of inorganic polydimethylsiloxane (PDMS) segments and organic poly(ε-caprolactone) (PCL) segments, diacrylated PCL(40)-block-PDMS(37)-block-PCL(40). To achieve tunable pore size with high interconnectivity, the SMP foams were prepared via a refined solvent-casting/particulate-leaching (SCPL) method. By varying design parameters such as degree of salt fusion, macromer concentration in the solvent and salt particle size, the SMP foams with excellent shape memory behavior and tunable pore size, pore morphology, and modulus were obtained.  相似文献   

4.
Recent advances in polymer shape memory   总被引:1,自引:0,他引:1  
Tao Xie Author Vitae 《Polymer》2011,52(22):4985-5000
Traditional shape memory polymers (SMPs) are those capable of memorizing a temporary shape and recovering to the permanent shape upon heating. Although such a basic concept has been known for half a century, recent progresses have challenged the conventional understanding of the polymer shape memory effect and significantly expanded the practical potential of SMPs. In this article, notable recent advances in the field of SMPs are highlighted. Particular emphasis is placed on how the new developments have changed the conventional view of SMPs, what they mean for practical applications, and where the future opportunities are.  相似文献   

5.
Shape memory polymers (SMPs)are widely used owing to their ability to change shapes under external stimuli. Conventional covalently crosslinked SMPs have limitations in biomedical applications. This article presents a linear shape memory biodegradable polyester without chemical crosslinks or multiblock structures. A new programming protocol is developed to split the crystals into two parts with different melting transitions through partial melting/recrystallization. The split crystals play different roles in fixation and recovery process to complete a shape memory cycle. The ratio between the partitioned crystals affects the fixed rate and recovery rate. The shape memory performance can be optimized by controlling the partial melting temperature and pre-stretching of the sample. Examples of complicated shape changes demonstrate the effectiveness of the proposed technique. The method is applicable to crystallizable linear polymers and has potential applications in implantation devices.  相似文献   

6.
Shape memory polymers (SMPs) are a class of materials that exhibit the ability to form multiple temporary shapes, with shape change most often occurring upon exposure to heat. Applications of SMPs can be found in many areas such as sensors, packaging, smart fabrics, and most commonly medicine. Often, thermoplastic SMPs are based on block copolymer or blend morphologies that create two distinct phases, which are on the nano- or micro-scale respectively, to facilitate shape fixing and shape recovery. Forced assembly multilayer co-extrusion of commercially available polyurethane (PU) and polycaprolactone (PCL) polymers was used to create a continuous periodic alternating layer architecture that exhibits shape memory behavior. Similar shape memory properties were observed between PU/PCL layers and blends at 50/50 volume composition; however, offset compositions showed significantly different behavior. The layered structure was maintained across all compositions, as compared with blends that exhibit a composition dependent morphology. The difference in morphology was directly attributed to the difference in shape memory behavior observed between layered and blend films with domain sizes on the micro-scale.  相似文献   

7.
Recently, multiple-shape memory polymers (SMPs) have attracted a great deal of attention in biomedical applications. Therefore, a series of triple-SMPs were developed by simply blending of two immiscible SMPs exhibiting two distinct transition temperatures, which is required for triple-shape memory (SM) effect. However, fabrication of triple-SMPs from completely miscible polymer pairs using the conventional blending approach is a challenging problem. Because this type of blends consists of one homogeneous phase and thereby exhibit only one transition temperature and dual-SM behavior. To overcome this problem, herein, a novel and versatile strategy is introduced for preparation of phase separated blends from a completely miscible polymer pair, exhibiting triple-SM behavior. Dual-electrospinning technique was utilized to simultaneously electrospin poly(lactic acid) (PLA) and poly(vinyl acetate) (PVAc), as a model miscible polymer pair, to obtain an interwoven polymer composite with two well-separated thermal transitions, as revealed by dynamic mechanical analyze. Consequently, the SM experiments revealed that the electrospun PLA/PVAc composites have triple-SM behavior. Furthermore, incorporation of graphene nanoplatelets into the composite fibers significantly improved the triple-SM properties of samples. Additionally, excellent adherence and spreading of the osteoblasts on the fibrous scaffolds containing graphene were observed. © 2019 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2019 , 136, 47471.  相似文献   

8.
This study presents two effective approaches to significantly improve the electro‐thermal properties and electro‐activated shape recovery performance of shape memory polymer (SMP) nanocomposites that are incorporated with carbon nanofibers (CNFs) and hexagonal boron nitrides (h‐BNs), and show Joule heating triggered shape recovery. CNFs were self‐assembled and deposited into buckypaper form to significantly improve the electrical properties of SMP and achieve the shape memory effect induced by electricity. The h‐BNs were either blended into or self‐assembled onto CNF buckypaper to significantly improve the thermally conductive properties and electro‐thermal performance of SMPs. Furthermore, the shape recovery behavior and temperature profile during the electrical actuation of the SMP nanocomposites were monitored and characterized. It was found that a unique synergistic effect of CNFs and h‐BNs was presented to facilitate the heat transfer and accelerate the electro‐activated shape recovery behavior of the SMP nanocomposites. © 2014 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2014 , 131, 40506.  相似文献   

9.
A network of thermally responsive shape‐memory polymers (SMPs) could imbibe a quantity of solvent molecules to swell, and subsequently induces a chemical potential change in polymer. When an equilibrium is reached between the mechanical load and the chemical potential of polymer network and solvent, the SMP polymer usually swells with a field of inhomogeneous and anisotropic deformation, which is considered to be equivalent to a hyperelastic field. We implement this theory in the free‐energy function equation, and analyze examples of swelling‐induced deformation and shape recovery behavior. This work may provide a powerful tool to study complex swelling‐induced shape‐memory behavior of SMPs in response to the immersing solvents. © 2011 Wiley Periodicals, Inc. J Appl Polym Sci, 2011  相似文献   

10.
Although various shape memory polymers (SMPs) or diverse applications have been widely reported, the SMPs based on rubbers have been rarely realized due to the low triggering temperature of rubbers. In another aspect, the SMPs based on sustainable substances are highly desired for the growing shortage in fossil resources. In the present study, we accordingly developed the sustainable SMPs with tunable triggering temperature, based on natural rubber (NR) and ferulic acid (FA) as the raw materials. Specifically, the SMPs are based on a crosslinked network of epoxidized natural rubber (ENR) crosslinked by in situ formed zinc ferulate (ZDF) via oxa-Michael reaction. The excellent shape memory effect (SME) is found in these SMPs, as evidenced by the high fixity/recovery ratio and the tunable triggering temperature. With the incorporation of natural halloysite nanotubes (HNTs), the stress and recovery rate of the SMPs are found to be tunable, which widens the application of this kind of SMPs. The combination of adoption of sustainable raw materials, and the excellent and tunable SME makes these SMPs potentially useful in many applications, such as various actuators and heat-shrinkable package materials.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号