首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 171 毫秒
1.
利用AspenPlus软件对常规的两塔间接序列精馏工艺分离氯化亚砜进行了模拟计算,并提出了一种新型分离工艺—隔板精馏塔工艺。通过对隔板精馏塔的模拟计算,研究了预分离段进料位置、侧线采出位置、回流进料比和分配比对产品纯度和再沸器能耗的影响,结果说明最佳的工艺条件为:预分离段第6块板进料,主塔第55块板采出,回流进料比为4.45,液相分配比为1.60,汽相分配比为1.98。将隔板塔在最佳操作条件下的能耗与常规两塔工艺操作能耗和设备投资进行比较,隔板精馏塔节约冷凝器负荷和再沸器负荷分别为34.62%和34.64%;然后运用专业的设备投资计算软件CAPCOST计算2种工艺设备投资,结果表明,隔板精馏塔新工艺可以降低17.27%的设备投资。综上可知隔板精馏分离氯化亚砜是一种节能、高效的新型分离工艺。  相似文献   

2.
任军利 《现代化工》2014,(7):145-148
利用Aspen Plus过程模拟软件,采用乙二醇作萃取剂,模拟研究了分壁式萃取精馏对摩尔分数为82%乙醇溶液脱水的分离过程。建立了分壁式萃取精馏模型,得到了优化的工艺参数,主塔理论板数为11块,精馏段理论板数为5块,回流比为0.10;副塔原料进料位置为第14块板,萃取剂进料位置为第4块板,隔板在副塔第18块板底端,萃取精馏段回流比为0.419,溶剂比为1.1。比较了分壁式萃取精馏和常规双塔2种流程下的能耗。模拟结果表明,采用分壁式萃取精馏,再沸器能耗降低了15%,节能效果明显。  相似文献   

3.
提出一种隔板塔精馏处理丙酮-乙酸乙酯-水-色素杂质混合物的新工艺。采用aspen plus软件对隔板塔精馏工艺进行模拟,考察回流比和液相分配比对隔板塔分离效果的影响,探讨液相分配比对隔板两侧液相浓度分布的影响规律。结果表明,当回流比为4,气相分配比为0.5时,液相分配比在0.05~0.1范围内,隔板塔的分离效果较好;液相分配比减小,预分馏段液相中乙酯浓度增大,侧线采出段上部的乙酯浓度减小,侧线采出段下部的乙酯浓度增大,预分馏段内乙酯的分割比增大;与原四塔精馏工艺相比,完成相同的分离任务,隔板塔精馏工艺再沸器可节能28.09%,冷凝器可节能27.01%,且节省了设备投资。  相似文献   

4.
采用分壁式精馏塔分离乙醇-正丙醇-正丁醇三元物系,通过Aspen Plus软件对其进行严格计算.模拟优化之后的塔设备参数和操作条件为:主塔理论板数为35块,进料段理论板数为16块,回流比为9.15,在进料段的第9块板处进料,侧线出料位置为第18块板,隔板的上下端连接位置分别为主塔第10块板和第27块板.与常规的两塔精馏相比,再沸器热负荷减少33.79%.  相似文献   

5.
采用分隔壁精馏塔(DWC)精馏技术对乙苯装置分离工艺进行了改进,将传统分离工艺中的苯塔和乙苯塔集成为1个分隔壁精馏塔,不仅可以实现烷基化产物的分离,而且可以有效降低装置能耗。使用Aspen Plus流程模拟软件对基于DWC的新分离工艺进行了全流程模拟,并对传统分离工艺和分隔壁塔新工艺的能耗进行了对比。计算结果表明,分隔壁塔总塔板数为58块,分隔壁在第15块到第40块塔板之间,进料位置在第24块塔板,侧线抽出苯位置在第4块板,侧线采出乙苯产品位置在第26块板,塔顶回流比为2.3。侧线抽出苯和塔顶采出苯的质量分数分别为99.44%和99.20%,中间侧线采出乙苯的质量分数为99.94%,塔釜物料中乙苯的质量分数为0.06%。分隔壁精馏塔实现了苯、乙苯和多乙苯物系的清晰分离。计算结果还表明,采用DWC分离工艺的能耗比传统的顺序分离工艺降低约41%。  相似文献   

6.
叶启亮  赵成辉  孙浩  李玉安  袁佩青 《现代化工》2023,(12):204-208+212
针对乙腈法抽提丁二烯流程中脱轻脱重单元高能耗问题,提出了隔壁塔热泵精馏新工艺。采用Aspen Plus软件对新工艺进行严格稳态模拟,研究考察了进料位置、隔板位置、分配比、侧线采出位置和压缩机压缩比对产品质量和能耗的影响。优化后的隔壁塔热泵精馏工艺最佳操作条件为:进料位置为第34块理论板,隔板顶部位置为第9块理论板,隔板底部位置为第59块理论板,分配比为0.17,侧线采出位置为第25块理论板,压缩机压缩比为2.24。完成相同的分离任务,脱轻脱重单元新工艺比传统工艺节能58.9%。  相似文献   

7.
隔壁塔萃取精馏制取无水异丙醇的模拟研究   总被引:1,自引:0,他引:1  
提出一种隔壁塔萃取精馏制取无水异丙醇的新工艺.利用Aspen Plus模拟软件,对隔壁塔和常规萃取精馏工艺进行了模拟。确定了隔壁塔的主要参数:主塔为30块理论板,回流比为3.侧线精馏段为10块理论板,回流比为2,垂直隔壁位于塔内18块板到28块板之间。在此参数下.可得到质量分数99.92%的无水异丙醇;比较了2种流程的液相组成、温度及汽液相流量的变化。模拟结果表明:隔壁塔萃取精馏新工艺可以节省再沸器能耗15.6%.冷凝器能耗15.4%,能有效降低运行费用。  相似文献   

8.
提出了利用分壁式萃取精馏塔分离甲醇-碳酸二甲酯共沸物的新工艺,分析并建立了分壁式萃取精馏塔的热力学等效模型,利用Aspen Plus对该塔进行模拟和参数优化。主塔理论板数为36块,侧线精馏段理论板数为5块,隔板底端在主塔第27块塔板上,原料进料在第15块板,萃取剂进料在第3块板,回流比为1.2,溶剂比为1.2,在此参数下对分壁式萃取精馏塔进行严格模拟,可得到质量分数99.58%的碳酸二甲酯和99.82%的甲醇,回收萃取剂的质量分数可达到100%。与常规萃取精馏工艺相比,再沸器热负荷降低16.01%,冷凝器热负荷降低13.47%。  相似文献   

9.
利用化工流程模拟软件Aspen Plus,以DMSO为萃取剂,模拟研究四氢呋喃-水共沸物的分隔壁萃取精馏和单塔侧线采出萃取精馏过程。分隔壁萃取精馏优化后工艺参数为:主塔22块理论板,萃取剂3块理论板处进料,原料17块理论板处进料,回流比0.5,溶剂比0.45;副塔10块理论板,回流比2.4。可得到摩尔分数为99.90%的四氢呋喃和99.19%的水,回收萃取剂的摩尔分数为99.72%。和常规双塔萃取精馏相比,冷凝器热负荷降低18.63%,再沸器热负荷降低15.58%,实现了有效节能。而单塔侧线采出萃取精馏不能实现四氢呋喃和水的有效分离。  相似文献   

10.
隔板精馏技术是一种节能、高效的新型分离工艺。以氯化亚砜产品的精馏过程为实例,应用PRO/II软件对两塔工艺进行模拟计算,模拟结果与工业生产实际数据对比吻合良好,可以得到高纯度产品。进一步模拟计算隔板精馏塔工艺,讨论了汽液相分配比、回流量和侧线采出位置对产品纯度及能耗的影响,确定最适宜操作条件为液相分配比1.4、汽相分配比2、回流量17 000 kg/h、侧线于采出段34块板采出。在最适宜操作条件下与常规精馏塔间接、直接精馏序列相比,分别可节能25.8%和17.9%。  相似文献   

11.
分壁精馏塔分离苯/甲苯/二甲苯的模拟工艺研究   总被引:1,自引:0,他引:1  
分壁精馏塔(简称分壁塔)在节能和节约投资方面都有很大的优势和潜力,因此近几年来人们对它的深入研究也越来越多。以等比例的苯、甲苯和二甲苯为原料,通过模拟工艺流程,研究分析了分壁塔的进料位置、隔板位置、回流比、侧线采出位置以及液汽相分流比与能耗、组分纯度的关系。研究结论显示,分壁塔的最适宜液相分流比和汽相分流比分别为0.65和0.45,与常规精馏塔相比,分壁塔分离所得的苯、甲苯和二甲苯的纯度高,冷凝负荷和热负荷分别比常规精馏塔降低31.066 9%和34.167 5%。  相似文献   

12.
提出了甲醇-乙醇-正丙醇三元混合物分壁塔精馏分离的新工艺。通过模拟和灵敏度分析,考察了分壁塔的进料位置、隔板位置、液体分配比、回流比等工艺参数对分离效果的影响,确定了分壁塔的最佳操作条件,并对分壁塔的能耗进行了分析。结果表明,单个分壁塔能达到常规三元混合物分离的要求,并且比常规精馏流程的分离过程节能约30%。  相似文献   

13.
隔板塔共沸精馏分离二氯甲烷-乙腈-水-硅醚体系   总被引:5,自引:3,他引:2       下载免费PDF全文
以二氯甲烷-乙腈-水-硅醚为分离体系,采用自制隔板塔小试装置,研究了共沸剂回流比和液相分配比等操作参数对隔板塔分离效果的影响。实验结果表明,当气相分配比Rv为0.5,共沸剂回流比为3时,液相分配比Rl在[0.12,0.2]范围内,隔板塔分离效果较好。在实验的基础上,采用Aspen Plus软件对隔板塔共沸精馏工艺进行模拟,考察了隔板塔共沸精馏工艺最佳操作区域及节能效果。模拟结果表明,特定分离要求下,隔板塔存在一个使再沸器热负荷最小的最佳操作区域,在此最佳操作区域内,Rl和Rv相互关联,呈一一对应关系;与三塔串联简单精馏工艺相比,完成相同的分离任务,隔板塔共沸精馏工艺再沸器节能32.74%,冷凝器热负荷减少33.70%,乙腈回收率由66.47%提高到96.01%,且大幅降低设备投资。  相似文献   

14.
黄国强  赵虎勇  孙帅帅 《化工进展》2013,32(6):1448-1452
运用化工模拟软件Aspen Plus,选用NRTL-RK物性模型和RADFRAC精馏模型,对三氯氢硅精馏塔的两种热泵流程进行了模拟计算,分别是塔顶气体直接压缩式和塔釜液体闪蒸再沸式热泵精馏。对比热泵精馏流程和常规精馏流程,结果表明:对三氯氢硅提纯而言,塔釜液体闪蒸再沸式热泵流程更有利。本研究采用双塔串行流程提纯三氯氢硅,运用塔釜液体闪蒸再沸式热泵精馏技术,优化后的主要操作参数为:T1塔回流比20,节流阀压力180 kPa,压缩机出口压力309 kPa;T2塔回流比5,节流阀压力227 kPa,压缩机出口压力310 kPa。优化后三氯氢硅的一次收率为88.75%,纯度超过99.9999%;在处理量相同情况下,与常规精馏相比,能耗费用节约82%。  相似文献   

15.
分隔壁精馏塔分离醇类混合物的模拟   总被引:1,自引:1,他引:0  
以分隔壁精馏塔分离乙醇、正丁醇及正己醇为例,建立分隔壁精馏塔稳态模型。用Aspen Plus软件进行模拟,模拟数据与实验数据吻合良好。同时考察了分隔壁精馏塔内液体分配比对产品含量的影响及正丁醇液相组成分布情况。比较了采用分隔壁精馏塔和常规二塔流程分离此物系的节能情况。结果表明,由于分隔壁精馏塔能极大地减少返混现象的产生,故达到相同的分离要求,分隔壁精馏塔比常规精馏的流程更节能,采用分隔壁精馏塔分离此物系时,中间组分的摩尔分数越高,节能效果越好,当进料组成为n(C2H5O)∶n(C4H10O)∶n(C6H14O)=1∶3∶1时,可节能25.9%。分隔壁精馏塔技术是一种节能、经济的新工艺。  相似文献   

16.
完全热耦合精馏相比传统精馏可以减少设备投资和操作费用,可代替传统精馏分离多组分混合物。对隔板塔(完全热耦合精馏塔)用于分离三组分混合物时的可操作性和经济性进行了研究。采用严格模拟方法,针对4种不同的进料组成设计了4种不同的隔板塔,并得出各个隔板塔气相和液相分割比对隔板塔年度总费用(TAC)的关系曲线,研究了当进料组成改变时4种隔板塔的经济性。  相似文献   

17.
将常规萃取精馏、差压热耦合萃取精馏以及隔壁塔萃取精馏技术应用于以糠醛为萃取剂的苯和环己烷共沸物分离过程。在稳态模型的基础上,利用Aspen Dynamics软件进行控制研究,对三工艺流程提出了若干控制策略。结果表明,对于常规萃取精馏过程,再沸器热负荷与进料量比值控制结构在降低控制过程超调量方面表现出明显优势;对于差压热耦合萃取精馏过程,带有压力-补偿控温策略的方案控制效果更佳;而对于隔壁塔,则选择了无隔板下方气液分离比控制的结构来作为较优的控制策略。  相似文献   

18.
萃取精馏分离异丙醇-水共沸体系的模拟与优化   总被引:3,自引:0,他引:3  
朱登磊  任根宽  谭超 《化学工程师》2009,23(10):13-16,22
对异丙醇-水共沸体系的萃取精馏过程进行模拟与优化。以乙二醇为萃取剂,基于UNIFAC模型,使用Aspen Plus化工模拟软件中的RadFrac模块进行萃取精馏模拟,并利用灵敏度分析模块对各工艺参数进行灵敏度分析与优化。结果表明,以乙二醇做萃取剂分离异丙醇-水共沸体系是可行的。对于处理流量5000kg·h-1的异丙醇-水共沸溶液,精馏塔具有22块塔板时,原料进料位置在第16块塔板,萃取液进料位置在第3块塔板,摩尔回流比为1.4,萃取剂与原料的进料比为2∶1,塔顶异丙醇质量分数可达0.9981,萃取精馏塔的分离效果和热负荷达到最优。模拟和优化的结果对工业化设计和生产具备指导意义。  相似文献   

19.
Based on a previous investigation, a simulation model was used for optimization of coproduction of ethyl acetate and n-butyl acetate by reactive distil ation. An experimental setup was established to verify the simulated results. The effects of various operating variables, such as ethanol feed location, acetic acid feed location, feed stage of reaction mixture of acetic acid and n-butanol, reflux ratio of ethyl acetate reactive distillation column, and distil-late to feed ratio of n-butyl acetate column, on the ethanol/n-butanol conversions, ethyl acetate/n-butyl acetate purity, and energy consumption were investigated. The optimal results in the simulation study are as follows:ethanol feed location, 15th stage;acetic acid feed location, eighth stage;feed location of reaction mixture of acetic acid and n-butanol, eighth stage;reflux ratio of ethyl acetate reactive distillation column, 2.0;and distillate to feed ratio of n-butyl acetate, 0.6.  相似文献   

20.
The present work deals with the effect of thermal feed quality on the performance of a divided wall distillation column (DWC). The thermal condition of the feed alters the pressure profile across the two sides of the dividing wall, thereby affecting not only the mass transfer characteristics but also the hydrodynamics of a DWC. It was observed that the natural (feasible) vapor split ratio does not depend on the liquid split ratio and the reflux flow rate when the feed is saturated liquid or sub-cooled liquid (q ≥ 1). However, for q < 1, that is, for two phase (vapor-liquid), saturated vapor, or superheated vapor feed, the liquid split ratio and the reflux flow rate have profound effect on the feasible vapor split ratio, and the pressure profiles are altered significantly. For the stable operation of a DWC, the feed should be either saturated liquid or sub-cooled liquid or the feed quality may be manipulated to adjust the vapor split ratio.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号