首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 125 毫秒
1.
导电聚合物共轭结构和类金属特性,使其复合材料作电极材料时能较好提高电极电化学性能。本文主要从金属氧化物、硫复合导电聚合物作锂离子电池正极材料两方面综述近年导电聚合物复合材料在锂离子电池正极材料的研究,并对其未来发展作了概述和展望。  相似文献   

2.
锂/硫电池具有高理论容量、高能量密度、原材料丰富而廉价并且对环境污染小等优点,受到了广泛的关注。然而硫电极导电率较低,循环过程中电极体积发生膨胀导致电极材料脱落,以及存在穿梭效应等缺点,从而制约了锂/硫电池的发展。结合近几年锂/硫电池硫基正极复合材料的研究现状,从硫/石墨烯复合电极材料、硫/碳复合电极材料、硫/导电聚合物复合电极材料三个方面进行阐述,介绍了它的研发状况及发展趋势。  相似文献   

3.
锂硫电池具有很高的能量密度[2 600(W·h)/kg],其正极材料硫具有储藏丰富、对环境友好等优点,因此锂硫电池成为下一代二次电池的研发重点。然而,硫的高绝缘性、反应过程中体积的变化以及中间产物多硫离子溶解等难题,使其目前很难实现商品化。石墨烯具有超高的导电性和优异的力学性能,其与硫制成的复合材料作为电池正极材料可以有效地解决上述问题。从石墨烯–硫复合材料、石墨烯–碳–硫复合材料、石墨烯–聚合物–硫复合材料、石墨烯–氧化物–硫复合材料等方面出发,总结了石墨烯在锂硫电池中作为正极材料的最新进展,并且提出了未来石墨烯在锂硫电池中应用的研究主要在探索石墨烯简捷的制备方法、研究石墨烯新的应用方式、开发多种材料复合等方面。  相似文献   

4.
锂硫电池采用硫化锂作为正极材料时,不仅具有较高的理论比容量(1166m A?h/g),还可用高嵌锂能力的碳或硅材料代替金属锂负极,有效避免锂枝晶刺穿隔膜造成的短路现象,故该储能体系为国内外学者所广泛关注。本文围绕硫化锂/金属、硫化锂/碳、硫化锂/导电聚合物3类复合材料体系综述硫化锂正极复合材料近年来的研究现状。同时,对电极材料的设计和功能化制备进行了阐述,指出了硫化锂正极复合材料未来的研究方向应注重不同导电复合材料的协同使用,并注重电极材料的结构设计,向多元复合、多级结构方向发展。另外,还要通过降低硫化锂的粒径以提高活性物质负载量和循环稳定性,最终获得高性能的锂硫电池。  相似文献   

5.
《化工科技》2021,29(3)
为了解决锂/硫电池中硫基电极材料导电性差且存在着穿梭效应、体积膨胀效应等缺点,人们进行了大量的改性研究。其中,用氮掺杂的多孔碳材料容易对电解液中溶解的多硫化物活性材料进行更好的吸附,从而抑制了锂/硫电池中多硫化物的溶解和迁移而引起的穿梭效应;另外,导电聚合物具有较好的电子导电性,作为硫/碳复合材料的载体,可以提高硫基电极材料的电导率,使锂/硫电池具有更好的循环稳定性。对锂/硫电池硫基复合电极材料的上述2种重要改性方法进行了详述,介绍了在锂/硫电池中的应用研究进展状况,并对上述材料在电化学储能中的应用进行了展望。  相似文献   

6.
介绍了导电高分子材料包括聚苯胺、聚吡咯、聚噻吩在锂硫电池构件中的应用。回顾了三种材料作为锂硫电池正极中的包覆层、硫载体、含硫聚合物、集流体和粘结剂以及隔膜改性剂和功能隔层的研究进展。分析表明,经过导电高分子包覆的硫颗粒或碳/硫复合材料具有更优异的倍率性能和循环稳定性;相比于聚苯胺或聚吡咯,商业化的聚噻吩水溶液在制备包覆层上具有工艺优越性。提出了锂硫电池中导电高分子材料的研发方向,即基于物理和化学固硫机理设计导电高分子包覆层、开发导电高分子材料的可控合成技术以及探索导电高分子材料的特殊固硫机理,以期为高性能锂硫电池中导电高分子的选材和设计提供思路。  相似文献   

7.
《应用化工》2022,(4):979-984
综述了锂硫电池存在的问题和碳纤维、碳纳米管、氧化石墨烯、多孔碳四种碳材料的性能以及其在锂硫电池正极中的应用,并探讨了碳材料原位掺杂非金属(C、N、O、B等)和复合各种金属化合物对材料的导电性和对多硫化物吸附性能的影响,以及对锂硫电池循环性能的影响。提出非金属掺杂多孔碳材料复合金属化物作为锂硫电池正极碳材料来降低多硫化物的穿梭效应以及反应过程中的体积膨胀,提高活性物质利用率,进而提高锂硫电池性能。  相似文献   

8.
介绍了锂硫电池的工作原理,综述了近年来发表在国内外对导电聚合物/硫复合材料作为锂硫电池正极材料的研究进展,并探讨了其发展方向和研究重点,最后提出了这一领域的研究趋势和发展前景。  相似文献   

9.
锂硫电池因其理论能量密度高、原材料丰富、成本低廉等优点而受到广泛关注。然而硫正极电导率低、体积膨胀、以及脱嵌锂过程中多硫化物产生的穿梭效应等问题限制了锂硫电池的商业化应用。其采用导电材料作为硫载体,一方面可缓解体积膨胀,另一方面可改善正极导电性,同时一定程度上限制多硫穿梭。多级孔碳由于具有导电性优良、结构稳定、孔径及形貌可控等优点,被认为是一种理想的硫载体。从锂硫电池的发展背景出发阐述了多级孔碳作为硫载体的研究意义,首先介绍了多级孔碳材料的制备方法如硬模板法、软模板法和活化法等,进一步介绍了碳材料中的微孔、介孔及大孔在锂硫电池中提升导电性、稳定结构和抑制多硫穿梭效应的作用机理,最后对多级孔碳作为硫载体推进锂硫电池的发展前景进行了展望。  相似文献   

10.
用于锂硫电池的碳质材料具有优异的力学、电学、导热性能,可调的孔结构以及丰富的表面特性,能有效地限制多硫化物的溶解,改善锂硫电池的电化学性能。因此,本文分别从一维碳、二维碳和三维碳这3个方面综述了锂硫电池硫基碳复合正极材料的研究进展,探讨了改性硫基碳正极材料的制备方法和结构设计。分析表明,高比表面积和高孔容积的多孔纳米碳材料对提高锂硫电池电化学性能而言至关重要,并提出用金属硫化物掺杂的有序介孔碳复合材料作为锂硫电池的正极材料能促进锂离子在正负极间的迁移,提高锂硫电池的循环稳定性和活性物质利用率。  相似文献   

11.
彭琳  牛明鑫  白羽  孙克宁 《化工学报》2022,73(8):3688-3698
锂硫电池凭借高理论能量密度和高理论比容量的优势成为极具发展前景的储能设备。然而,单质硫和硫化锂的绝缘性、放电过程中产生的体积膨胀及多硫化物溶解导致的“穿梭效应”等问题,限制其商业化发展。为解决上述问题,采用低温液相法合成中空硫球(HS),通过水热法制备纳米花状MoS2/还原氧化石墨烯(MoS2/rGO),随后将MoS2/rGO包覆在HS表面获得HS-MoS2/rGO复合正极材料。利用XRD、SEM、TEM、XPS等对该材料的晶体结构、形貌等性质进行表征,采用循环伏安法、交流阻抗法以及恒流充放电对复合正极进行电化学测试。研究表明,MoS2/rGO对多硫化物具有强吸附能力和高催化活性,能够有效限制多硫化物的穿梭;同时硫球的中空结构能够缓解体积膨胀,保持正极结构稳定。HS-MoS2/rGO正极展现出优异的倍率性能和循环稳定性。  相似文献   

12.
彭琳  牛明鑫  白羽  孙克宁 《化工学报》1951,73(8):3688-3698
锂硫电池凭借高理论能量密度和高理论比容量的优势成为极具发展前景的储能设备。然而,单质硫和硫化锂的绝缘性、放电过程中产生的体积膨胀及多硫化物溶解导致的“穿梭效应”等问题,限制其商业化发展。为解决上述问题,采用低温液相法合成中空硫球(HS),通过水热法制备纳米花状MoS2/还原氧化石墨烯(MoS2/rGO),随后将MoS2/rGO包覆在HS表面获得HS-MoS2/rGO复合正极材料。利用XRD、SEM、TEM、XPS等对该材料的晶体结构、形貌等性质进行表征,采用循环伏安法、交流阻抗法以及恒流充放电对复合正极进行电化学测试。研究表明,MoS2/rGO对多硫化物具有强吸附能力和高催化活性,能够有效限制多硫化物的穿梭;同时硫球的中空结构能够缓解体积膨胀,保持正极结构稳定。HS-MoS2/rGO正极展现出优异的倍率性能和循环稳定性。  相似文献   

13.
锂硫电池因具有超高的理论比容量(1675 mA·h·g-1)而被认为是最具有应用前景的二次电池。但硫基正极面临着硫导电性差、利用率低、正极结构稳定性差等问题。采用KOH化学活化法将廉价易得的农业废弃物玉米苞叶制备为多孔碳材料后,与升华硫复合获得硫/碳复合材料。利用XRD、SEM、TEM和BET对该硫/碳复合材料的微观结构、形貌等进行表征发现,玉米苞叶制备的多孔碳材料具有类石墨烯片层结构,且表面具有大量的介孔结构,硫元素均匀分布在多孔碳材料中。采用恒流充放电和交流阻抗法对该复合材料正极电化学性能进行测试发现其具有较高的放电比容量和良好的循环性能,这是由于类石墨烯片层结构的多孔碳材料提高了硫正极的导电性,且其极大的比表面积大幅增加了电化学反应位点,提高了硫的利用率。  相似文献   

14.
杨蓉  李兰  王黎晴  付欣  燕映霖  陈利萍  路蕾蕾 《化工学报》2017,68(11):4333-4340
采用改进的Hummers法制备了氧化石墨(GO),对GO进行碳酸浸渍后,通过微波固相法剥离其为少层的还原氧化石墨烯(MRGO)。并采用低温原位化学沉积法制备微波还原氧化石墨烯/纳米硫(MRGO/NS)锂硫电池正极复合材料。通过FT-IR、XRD、SEM、TEM、BET对所制备的MRGO和MRGO/NS的微观结构、形貌等进行表征,采用恒流充放电测试和交流阻抗测试对复合材料的电化学性能进行研究。结果表明,通过微波固相法剥离碳酸浸渍后的GO所制备的MRGO为少层的折扇状还原氧化石墨烯,可为锂硫电池的硫和多硫化物提供足够的容纳空间,从而缓解穿梭效应,提高了电极材料的循环性能和倍率性能。  相似文献   

15.
金属有机骨架材料(MOFs)由于其高比表面积、可调孔结构以及多样的组成等引起了学者们的极大关注,尤其在电化学储能领域取得了较大的研究进展。本文综述了近几年MOFs基材料在锂硫电池、锂离子电池和超级电容器等电化学储能领域中的应用。详细介绍了MOFs及其复合材料作为锂硫电池正极载体时与活性物质的作用机理,探讨了MOFs对活性物质硫的物理封装和化学配位作用。此外,阐述了MOFs衍生碳材料因独特孔结构、较强导电性和丰富活性位点等作为电极材料时对电池性能的提升。最后对MOFs基材料在电化学储能中的研究前景作出了展望,指出MOFs基材料中杂原子比例的控制和孔道设计是未来研究的重点。  相似文献   

16.
锂硫电池具有高比能量密度、原料丰富且对环境友好等优势,成为当前最具有吸引力的二次电池体系之一.然而循环寿命低制约着其商业化进程.本文主要综述了几十年来国内外学者在硫/炭复合正极材料方面的研究现状,并对未来新型正极材料的研究方向进行了展望.  相似文献   

17.
The charge and discharge characteristics of lithium batteries with sulfur composite cathodes have been investigated. The sulfur composites showed novel electrochemical characteristics. The analysis of the differential capacity indicated that the discharge process showed two voltage plateaus of 2.10 V and 1.88 V, and the charge process also presented two voltage plateaus of 2.22 V and 2.36 V. The overcharge test showed that the composite cannot be charged over 4.0 V, the voltage always stopped at about 3.9 V during charging, indicating that the composite presented the intrinsic safety for the overcharge of lithium batteries. The overcharge can cause serious safety problem for the conventional Li-ion batteries. The overcharge test also showed that the batteries with sulfur composite were destroyed when the upper cut-off voltage was over 3.6 V. However, the composite presented good reversible capacity after it was deep discharged even to 0 V. It showed stable cycleability and high cycling capacity of 1000 mAh g−1 when cycling between 0.1 V and 3.0 V, indicative of the different characteristic from the conventional oxide cathode materials. The prototype polymer battery with the composite cathode material presented the energy density of 246 Wh kg−1 and 401 Wh L−1.  相似文献   

18.
Gelatin, a natural biological macromolecule, was successfully used as a new binder in place of poly(ethylene oxide) (PEO) in the fabrication of the sulfur cathode in lithium-sulfur batteries. The structure and electrochemical performance of the two types of sulfur cathodes, with gelatin and PEO as binders, respectively, were compared in 1 M LiClO4 DME/DOL (V/V = 1/1) electrolyte. The results showed that the gelatin binder had multifunctional effects on the sulfur cathode: it not only functioned as a highly adhesive agent and an effective dispersion agent for the cathode materials, but also an electrochemically stable binder. The gelatin binder-sulfur cathode achieved a high initial capacity of 1132 mAh g−1, and remained at a reversible capacity of 408 mAh g−1 after 50 cycles, all of which were better than with the PEO binder-sulfur cathode under the same conditions.  相似文献   

19.
The preparation of sulfur/carbon composite materials for lithium–sulfur batteries is currently a very active research field. Thereto, nanoporous carbon materials are mixed with or infiltrated by sulfur to provide a close contact between both compounds. The characterization of these often complex and on the nanoscale structured composite materials is usually done by vacuum based methods such as nitrogen physisorption or scanning electron microscopy, for example. In this study we show that results from these measurements can be misinterpreted. The reason is the volatility of sulfur that leads to a rapid migration and continuous redistribution effects, especially at low pressures and/or elevated temperatures. For nitrogen physisorption this means that virtually identical isotherms are found for S8/C samples, irrespective of their pre-treatment, making it impossible to prove intentional nanostructuring by pore filling. Similar effects are found for scanning electron microscopy studies where sulfur migration and contamination of originally sulfur free samples is evidenced in situ. Further evidence is provided by macroscopic experiments combined with elementary analysis. The results show that characterizing the structure of S8/C composite materials or electrodes is very challenging. In addition, the observed rapid sulfur redistribution might also have important consequences for the performance of practical lithium-sulfur batteries.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号