首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 921 毫秒
1.
生物质炭具有天然的分级多孔结构,是双电层电容器优良的电极材料,但是其电导率低限制了其应用。将具有良好导电性能的石墨烯与生物质炭做成复合材料,可提高超级电容器的性能。采用真空浸渍法将石墨烯负载到生物质炭的表面和孔隙中。石墨烯不仅提高了生物质炭的电导率,而且增加了比表面积。生物质炭/石墨烯复合电极在电流密度为0. 5 A/g时,比电容大小为159. 74 F/g,比未负载石墨烯的纯生物质炭电极提高了4倍多。充放电循环5 000次,性能无衰减,呈现出良好的稳定性。  相似文献   

2.
非对称超级电容器(ASCs)因电化学性能更为优异而成为近几年来的研究热点,石墨烯作为一种新颖的二维碳材料,具有比表面积大、导电性高、力学性能好和化学稳定性优异等优点,是非对称超级电容器复合电极的一类理想载体材料。本文综述了近几年来石墨烯基复合电极在非对称超级电容器中的应用状况,认为比表面积更大、导电性更好的石墨烯将会促进石墨烯基复合电极在超级电容器中的应用与发展,也会提高石墨烯基非对称超级电容器的性能。指出将金属氧化物、导电聚合物、金属氢氧化物以及金属硫化物纳米化,使之兼具大的有效面积、丰富的氧化还原活性位点等特点,从而提高复合材料的比电容,是石墨烯基复合电极的研究重点。  相似文献   

3.
电容去离子技术是一种高效节能、绿色环保的基于电化学双电层电容理论的电吸附脱盐技术。该技术的关键和核心在于电极材料的选择。石墨烯因具有较高的比表面积、电导率以及优异的物理化学特性,被认为是一种理想的电极材料。本文从石墨烯电极材料性能设计角度出发,归纳总结了针对石墨烯材料特性(亲水性、比表面积/孔隙、导电性)的研究现状,分析存在的问题,并展望了石墨烯基电容去离子电极材料的发展前景。  相似文献   

4.
采用一步水热合成法,在180℃,12 h条件下制备了30%二氧化锰/石墨烯(MnO2/G)复合材料。实验结果表明:MnO2均匀且较为牢固地锚定于石墨烯表面,同时MnO2的沉积阻止了多层石墨烯的复合,从而使得复合物具有较大的比表面积。相同条件下,MnO2/石墨烯相较于单纯MnO2或石墨烯具有很好的臭氧催化氧化甲苯性能,这可以归结于MnO2和石墨烯间的协同催化作用。  相似文献   

5.
三维石墨烯具有丰富的孔洞结构、大的比表面积、高的导电率、快的充电速率和长的循环寿命等优异性质,将其与聚苯胺复合制备三维石墨烯/聚苯胺复合材料可以充分发挥石墨烯和聚苯胺的优势性能,制得电化学性能优异的复合材料。该复合材料在超级电容器电极材料领域得到了广泛的关注。综述了三维石墨烯/聚苯胺复合材料的制备方法及其电化学性能,并针对复合材料研究中存在的问题、未来的研究方向进行了展望。  相似文献   

6.
纳米材料修饰阳极可显著提高微生物燃料电池(MFC)性能,本研究主要探索了石墨烯、聚苯胺和石墨烯/聚苯胺复合修饰电极对MFC产电性能的影响。使用电化学方法电镀石墨烯于碳布表面,进一步通过原位聚合法制备聚苯胺来修饰碳布电极。将修饰电极装载入双室型MFC中,测量其产电性能,并对电极进行表征,测量电化学性能。通过扫描电镜观察到, 碳布能够被修饰上石墨烯和聚苯胺,并且聚苯胺附着于碳纤维或石墨烯薄层表面,形成棒状的纳米结构。产电性能方面,装载石墨烯/聚苯胺修饰电极的MFC最大输出电压最高,达到了(291±22)mV,比装载空白碳布电极的对照组MFC提高了175%以上。石墨烯/聚苯胺电极组MFC的最大输出功率密度同样最高,达到了(653 ± 25)mW·m-2,为空白碳布对照组的10.5倍。实验结果表明:石墨烯/聚苯胺复合修饰电极可有效利用石墨烯导电性好和聚苯胺生物相容性高的优点,显著提高MFC的产电性能。  相似文献   

7.
采用氧化石墨、氧化石墨烯溶胶、还原氧化石墨烯作为石墨烯前驱体,与煅前石油焦通过不同的改性方式复合,利用KOH化学活化法制备超级电容器用活性炭复合材料,对不同复合方式获得的复合材料与纯活性炭比较,研究其在比表面积、孔结构以及电化学方面的优异性能。发现石墨烯复合活性炭具有很高的比表面积,可达2 700 m~2/g,复合材料具有优异导电性,比容量可达165 F/g。  相似文献   

8.
以商业活性炭为载体,通过硝酸表面改性活性炭,引入含氧官能团,为棒状二氧化锰(MnO2)和活性炭的结合提供桥梁。采用化学沉淀法在炭表面反应生成纳米结构的棒状二氧化锰,制备二氧化锰/改性活性炭(MnO2/OAC)复合电极材料。采用扫描电镜(SEM)、X射线衍射(XRD)对其结构进行表征;采用循环伏安法、恒流充放电对其电化学性能进行研究。结果表明,生成的MnO2均匀地负载在碳的表面,颗粒的直径在20~50nm;在1mol/L的Na2SO4电解液中,MnO2/OAC6复合电极材料体现了极佳的比电容,达到369.7F/g。材料优异的电化学性能归功于活性炭发达的孔隙结构和MnO2提供的法拉第电容。  相似文献   

9.
纳米材料修饰阳极可显著提高微生物燃料电池(MFC)性能,本研究主要探索了石墨烯、聚苯胺和石墨烯/聚苯胺复合修饰电极对MFC产电性能的影响。使用电化学方法电镀石墨烯于碳布表面,进一步通过原位聚合法制备聚苯胺来修饰碳布电极。将修饰电极装载入双室型MFC中,测量其产电性能,并对电极进行表征,测量电化学性能。通过扫描电镜观察到,碳布能够被修饰上石墨烯和聚苯胺,并且聚苯胺附着于碳纤维或石墨烯薄层表面,形成棒状的纳米结构。产电性能方面,装载石墨烯/聚苯胺修饰电极的MFC最大输出电压最高,达到了(291±22) mV,比装载空白碳布电极的对照组MFC提高了175%以上。石墨烯/聚苯胺电极组MFC的最大输出功率密度同样最高,达到了(653±25) mW·m~(-2),为空白碳布对照组的10.5倍。实验结果表明:石墨烯/聚苯胺复合修饰电极可有效利用石墨烯导电性好和聚苯胺生物相容性高的优点,显著提高MFC的产电性能。  相似文献   

10.
二硫化钼(MoS_2)是一种稳定、安全、廉价的钠离子电池负极材料,但是二硫化钼的本征电导率较低,限制了钠离子电池的比容量和倍率性能。利用一步水热法制备了二硫化钼和还原石墨烯(MoS_2/RGO)复合体系,并用于钠离子电池负极材料中。还原石墨烯不仅能增强复合材料的导电性,而且能够提高MoS_2的结构稳定性,从而提升钠离子电池的比容量和循环稳定性。电化学测试结果表明,在1 A/g的电流密度下循环250次后,MoS_2/RGO复合电极的比容量仍然高达509 m A·h/g。  相似文献   

11.
以商业活性炭为载体,通过硝酸表面改性活性炭,引入含氧官能团,为棒状二氧化锰(MnO2)和活性炭的结合提供桥梁。采用化学沉淀法在炭表面反应生成纳米结构的棒状二氧化锰,制备二氧化锰/改性活性炭(MnO2/OAC)复合电极材料。采用扫描电镜(SEM)、X射线衍射(XRD)对其结构进行表征;采用循环伏安法、恒流充放电对其电化学性能进行研究。结果表明,生成的MnO2均匀地负载在碳的表面,颗粒的直径在2050nm;在1mol/L的Na2SO4电解液中,MnO2/OAC6复合电极材料体现了极佳的比电容,达到369.7F/g。材料优异的电化学性能归功于活性炭发达的孔隙结构和MnO2提供的法拉第电容。  相似文献   

12.
《应用化工》2022,(8):1577-1580
石墨烯/铁氧体复合材料由于复合单体石墨烯与铁氧体两者特殊的结构和性质引起了国内外研究者的极大兴趣。石墨烯结构特殊,性能优异却由于其本身存在的层间易团聚现象导致了有效比表面积减小,比电容等性能下降,铁氧体具有高的比容量却电导率低,为了有效地克服二者的不足并充分利用其优势,近年来研究者们不断研究两者的复合制备方法。介绍了复合材料的制备方法的最新研究进展,并对其应用前景进行了展望。  相似文献   

13.
以十六烷基三甲基溴化铵(CTAB)为取向模板,采用模板辅助化学氧化聚合技术制备了聚苯胺。通过聚苯胺与氧化石墨烯混合分散液的自组装得到石墨烯/聚苯胺复合薄膜材料。采用扫描电子显微镜、透射电子显微镜、傅里叶变换红外光谱,氮气吸附-脱附测试和电化学测试,分别表征聚苯胺和石墨烯/聚苯胺复合薄膜的形貌、结构、组分和电化学性能。结果表明,在CTAB作用下,合成了无规则纳米片状聚苯胺;当电流密度为0.5 A/g时,其比电容为470.8 F/g。石墨烯/聚苯胺复合薄膜的比表面积为43.2 m~2/g且表现为多级层状孔结构;将复合薄膜以三明治结构组装成全固态超级电容器测试其电化学性能。该复合薄膜表现出优异的面积比电容(在0.1 mA/cm~2的电流密度下达到292 mF/cm~2)和良好的循环稳定性。  相似文献   

14.
《应用化工》2017,(8):1577-1580
石墨烯/铁氧体复合材料由于复合单体石墨烯与铁氧体两者特殊的结构和性质引起了国内外研究者的极大兴趣。石墨烯结构特殊,性能优异却由于其本身存在的层间易团聚现象导致了有效比表面积减小,比电容等性能下降,铁氧体具有高的比容量却电导率低,为了有效地克服二者的不足并充分利用其优势,近年来研究者们不断研究两者的复合制备方法。介绍了复合材料的制备方法的最新研究进展,并对其应用前景进行了展望。  相似文献   

15.
石墨烯常被用于储能器件的电极材料,然而采用化学方法制备的石墨烯其实际应用性能远低于其理论值。有鉴于此,本文提出了利用惰性金属钯纳米材料解决石墨烯实际应用中存在的电导率差和易产生团聚的问题。制备的钯/石墨烯复合材料具有优异的导电性能,比单一石墨烯材料具有更高的电导率,这表明金属钯纳米颗粒显著改善石墨烯片层间的堆叠团聚以及结构缺陷问题。此外,研究了金属钯纳米颗粒对于钯/石墨烯复合电极材料功率密度的影响。  相似文献   

16.
《炭素》2017,(4)
通过对石墨烯(GN)制备、结构改性及与聚苯胺(PANI)、银粒子(Ag)的复合,设计了制备GN/PANI/Ag新型电极复合材料的工艺路线。首先利用Hummers氧化还原法将石墨氧化成氧化石墨烯,利用硼氢化钠将氧化石墨烯还原成石墨烯,将石墨烯与聚苯胺、银粒子反应,最后制得了GN/PANI/Ag复合材料。利用扫描电子显微镜(SEM),透射电子显微镜(TEM),热重分析(TG)和电导率测试对GN和GN/PANI/Ag的形貌,热稳定性和电化学性能进行了分析研究。结果表明,聚苯胺类衍生物、石墨烯以及银粒子三相在整个复合材料中共存,材料的复合使体系热稳定性和电化学性能得到提高。  相似文献   

17.
采用石墨烯(GO)掺杂,以KMnO_4作为苯胺单体聚合引发剂,直接反应合成GO/PANI/MnO_2三元复合催化颗粒,优化MnO_2氧还原反应(ORR)催化性能。采用XRD、FE-SEM研究其颗粒特性和表面形貌,极化曲线、循环伏安、交流阻抗法研究空气电极氧化还原反应过程。结果表明,该复合催化颗粒具有粒度小、比表面积高等特性,空气电极极化和阻抗特性随复合催化颗粒含量不同而变化,GO/PANI/MnO_2在催化剂中占75%时呈现优良催化效果及循环稳定性。含复合催化颗粒的空气电极比单一MnO_2催化颗粒的电极可提升放电平台电压近0.1 V,放电时间延长近100%。所获结果可为复合电化学催化剂组成设计与性能优化提供新数据和技术应用方案。  相似文献   

18.
郑鹏坤  王黎  余杨 《现代化工》2022,(7):176-181
以不同质量比的石墨烯(GO)与亚氧化钛为原料制备复合电极,并通过对比复合材料的形貌结构及其电化学特性选择出最适合的质量比;再将复合电极制作成电容去离子脱盐装置进行吸附实验。通过X射线衍射、红外光谱、循环伏安曲线以及电化学电阻抗等对其进行表征,结果表明,m(GO)∶m(亚氧化钛)∶m(聚乙烯醇)=4.9∶2.1∶3时,其比电容量为100.76 F/g,比表面积为247.06 m2/g,吸附量为13.78 mg/g。复合材料之所以表现出良好的脱盐性能,是因为GO和亚氧化钛对Na+吸附的协同作用。  相似文献   

19.
将氧化石墨(GO)还原为石墨烯(GNS),以高锰酸钾(KMnO_4)和硫酸锰(MnSO_4)为锰源,在石墨烯基体上合成二氧化锰/石墨烯(MnO_2/GNS)复合电极材料。采用扫描电子显微镜(SEM)、X射线衍射(XRD)对材料的微观形貌和晶体结构进行表征;将电极材料制备成复合电极片并组装成对称型超级电容器,采用恒流充放电对其进行电化学性能测试。结果表明,复合电极材料在5A·g~(-1)的电流条件下,比容量达到291.5 F·g~(-1),在循环200次后电容保持率达到95.6%,具有良好的电化学性能。  相似文献   

20.
作为染料敏化太阳能电池的一个重要组成部分,对电极的研究对染料敏化太阳能电池(DSSC)的发展有着重要的意义。石墨烯基材料因其良好的电化学催化活性,高的电导率、腐蚀阻抗,大比表面积、重量轻以及低制备成本而受到了研究人员的关注。本文选用还原氧化石墨烯与聚苯胺复合作为对电极进行研究,通过石墨烯的高电导率以及聚苯胺较好的催化活性能够制备出了性能更优越的复合对电极。并对其进行了XRD、SEM表征以及电化学性能测试,探究了其作为染料敏化太阳能电池对电极的光电转换效率。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号