首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The dynamic behavior of conveyor-belt dryers involving externally controlled heat and mass transfer phenomena has been studied via digital simulation. The investigation concerned an industrial dryer used for the moisture removal from wet raisins. The dryer consisted of three drying chambers and a cooling section, all involving the same conveyor belt. For each chamber, perfect temperature control was assumed for the drying air temperature, while its humidity was left uncontrolled. The effect of material temperature and moisture content at the entrance of the dryer and the drying air temperature on material temperature and moisture content at the exit of the dryer and the corresponding drying air humidity, have been explored by step forcing the disturbance and manipulated variables in the non-linear dryer model simulator. Results showed that material moisture content at the exit of the dryer is greatly affected by material moisture content at the entrance as well as by the drying air temperature. Reliable transfer functions for each process module were obtained by fitting several transfer function models on the simulated data using a least-squares approach. It was found that when input material moisture content could be instantly measured, the system responded slowly enough so that excellent control could be achieved for material moisture content at the exit of each chamber. In this case a Pi-feedback cascade temperature controller was used. When a 15 sec delay measuring sensor was introduced, poor performance was observed. A simplified lead-lag feedforward controller, added to the system, in conjunction with the primary Pi-feedback cascade controller, resulted in good control performance of the delay sensor system.  相似文献   

2.
Knowledge of peanut drying parameters, such as temperature and relative humidity of the ambient air, temperature and relative humidity of the air being blown into the peanuts, and kernel moisture content, is essential in managing the dryer for optimal drying rate. The optimal drying rate is required to preserve quality and desired flavor. In the current peanut-drying process, such parameters are elusive in real time and are either not measured or only measured periodically by an operator. A peanut-drying monitoring system, controlled by an embedded microcontroller and consisting of relative humidity and temperature sensors and a microwave peanut moisture sensor, was developed to monitor drying parameters in real time. It was deployed during the 2014 peanut harvest season at a peanut buying point in central Georgia, USA. It was placed in 45-ft (13.7-m) drying semitrailers to monitor in-shell kernel moisture content, temperature of the drying peanuts, temperature, and relative humidity of the exhaust air from the peanuts and relative humidity of the air being blown into the peanuts in real time. In-shell kernel moisture content was determined with a standard error of performance of 0.55% moisture content when compared to the reference oven-drying method. Data from drying parameters were time-stamped and stored on a CompactFlash card every 12?s and were used to assess the efficiency of dryer control settings. Ambient air conditions were measured by an on-site weather station. Results of the study support the value of such a monitoring system and show that implementation of the system for dryer control has the potential for saving a buying point, in the current economical context, as much as $22,000 annually in costs of electric energy and propane.  相似文献   

3.
The development of MlMO control systems for individual conveyor-belt drying chambers was studied for the case of industrial units used for the moisture removal from wet raisins. The process was considered to be a 2×2 open-loop system in which material moisture content and temperature at the exit of the drying chamber were to be controlled. Its dynamic behavior was investigated via digital simulation of the corresponding process mathematical model which involves 6 state variables. The effect of several manipulated and load variables on process outputs was explored by examining the corresponding responces obtained when the input variables were step forced into the non-linear dryer model simulator around the operational point studied. Reliable transfer functions for each interaction module were produced, based on simulated data and process basic constants. The best control configuration was selected bv deriving the RGA values of each one that was based on its frequency information. The propsed scheme, used steam and fresh air flowrates as manipulated variables. This scheme was found to imply insignificant interactions between material moisture content and temperature loops. The suggested pairing was material moisture content controlled by steam flowrate and fresh air flowrate controlling material temperature. Single-loop PI-feedback controllers were installed in each loop and tuned by Ziegler-Nichols techniques. The closed-loop system performance was examined by suitably introdcuing step changes to both set-points as well as to process disturbances. The overall control system performance proved to be quite satisfactory.  相似文献   

4.
A dynamic mathematical model for drying of agricultural products in an indirect cabinet solar dryer is presented. This model describes the heat and mass transfer in the drying chamber and also considers the heat transfer and temperature distribution in a solar collector under transient conditions. For this purpose, using conservation laws of heat and mass transfer and considering the physical phenomena occurring in a solar dryer, the governing equations are derived and solved numerically. The model solution provides an effective tool to study the variation of temperature and humidity of the drying air, drying material temperature, and its moisture content on each tray. The predicted results are compared with available experimental data. It is shown that the model can predict the performance of the cabinet solar dryer in unsteady-state operating conditions well. Furthermore, the effect of some operating parameters on the performance and efficiency of dryer is investigated and compared with selected published data.  相似文献   

5.
ABSTRACT

The development of MlMO control systems for individual conveyor-belt drying chambers was studied for the case of industrial units used for the moisture removal from wet raisins. The process was considered to be a 2×2 open-loop system in which material moisture content and temperature at the exit of the drying chamber were to be controlled. Its dynamic behavior was investigated via digital simulation of the corresponding process mathematical model which involves 6 state variables. The effect of several manipulated and load variables on process outputs was explored by examining the corresponding responces obtained when the input variables were step forced into the non-linear dryer model simulator around the operational point studied. Reliable transfer functions for each interaction module were produced, based on simulated data and process basic constants. The best control configuration was selected bv deriving the RGA values of each one that was based on its frequency information. The propsed scheme, used steam and fresh air flowrates as manipulated variables. This scheme was found to imply insignificant interactions between material moisture content and temperature loops. The suggested pairing was material moisture content controlled by steam flowrate and fresh air flowrate controlling material temperature. Single-loop PI-feedback controllers were installed in each loop and tuned by Ziegler-Nichols techniques. The closed-loop system performance was examined by suitably introdcuing step changes to both set-points as well as to process disturbances. The overall control system performance proved to be quite satisfactory.  相似文献   

6.
Currently, two main methods are used to take online measurement of the solids moisture in fluidised bed dryers, namely microwave resonance and near infrared spectroscopy. In this paper, a new online approach to solids moisture measurement of batch fluidised bed dryers by electrical capacitance tomography (ECT) is presented for the first time. Based on online measurement of solids moisture, it is possible to implement feedback control and process optimisation of batch fluidised bed drying processes, aiming to increase the operation efficiency and to improve product quality. A twin-plane ECT sensor with eight electrodes in each plane is mounted in the bottom of a glass fluidisation chamber. From the adjacent electrode pairs, the water content of the solids is estimated based on the correlation between the moisture content and the permittivity value. To reduce measurement error, the effect of temperature on moisture measurement is compensated. The fluidisation velocity is estimated by a semi-empirical function based on the measured water content. The acquired information is sent to a controller to adjust the air flow rate of the fluidised bed dryer. To validate the moisture measurement by ECT, a mathematical model has been developed, based on the measured temperature and relative humidity of the outlet air. The Landweber iteration method is applied to reconstruct images. The averaged solids concentration along the radial direction at different fluidisation conditions is given and compared with results by the linear back-projection (LBP) method. Results from batch drying processes with online measurement and feedback control are given and compared with no feedback control. To compare the operation efficiency, the thermal efficiency is considered and the results show the possibility of online control and optimisation of the fluidised bed drying processes, based on online measurement of solids moisture by ECT. Some challenges and future work are discussed.  相似文献   

7.
《Drying Technology》2007,25(1):97-105
The article surveys the drying of solids materials and polymer solutions when infrared radiation (IR) is employed as the main heating source. The study reviews the current research trends of IR drying of specific applications. A case study similar to an industrial setting is presented to illustrate a model development and control scheme of an IR drying unit. The design and online implementation of an internal model controller (IMC) is discussed. The study demonstrates the controller capabilities to suppress random variations of the moisture content in the material entering the dryer. Simulation results also showed the success of model predictive control (MPC) multivariable controller ability, while handling process interactions and process constraints, to track setpoint changes in the humidity and temperature of the material exiting the dryer and to reject unmeasured stochastic disturbances in the inlet humidity stream.  相似文献   

8.
This study applied a partial differential equation model with newly-developed thin layer equations to simulate batch re-circulating dryers under different drying conditions, which are combinations of four parameters: drying air temperature, drying air absolute humidity, drying period duration, and tempering period duration. The moisture change and the drying rate, which were of particular concern with respect to the simulated data, were investigated. Validation drying tests were carried out in a lab scale re-circulating rice dryer. Two sets of experiment were performed involving different drying parameters to simulate re-circulating rice dryers which are extensively used in Asian countries. Comparing these two experimental data with two simulated drying curves respectively, it revealed they are quite consist with each other under the same drying conditions. Drying air temperature, drying air humidity, drying period duration and tempering period duration significantly influenced the drying rate. Under the same drying condition, the tempering period duration effect was insignificant to the drying rate in drying zone as the drying air humidity or temperature increased. And, a higher initial moisture content obtained higher time and energy efficiency for the re-circulating rice dryers.  相似文献   

9.
The influence of potential heat exposure during spray drying on the oxidative stability of spray dried orange oil was studied. The design of some of the table top spray driers expose dried product to dryer exit air temperatures in the powder collection chamber or on the walls of the dryer if there is an accumulation of material on the drying chamber walls. This heat exposure may accelerate oxidation of the product in subsequent storage. To determine the potential for heat damage to affect oxidation of the powders produced, an orange oil infeed emulsion (carrier material - modified starch) was prepared and spray dried using the sample collection chamber supplied by the manufacturer as standard equipment. The spray dryer was then modified to extend the collection chamber inlet such that the product remained cooler than in the standard collection chamber. In this study, the spray dryer was operated for 1?h (inlet air temperature; 180°C and an exit air temperature; 100°C). Thus, the spray dry product could have been exposed to as much as 1?h of heating in the collection chamber (potentially at temperatures as high as the exit air temperature). In the case of spray drying with a collection chamber extension, the collected product was maintained at ca. room temperature. This would approximately mimic the heat exposure powders receive in an industrial spray dryer. Powders produced using both equipment designs were taken from both the collection and drying chambers, adjusted in water activity (0.33) under a nitrogen environment, and then put into storage in an incubator maintained at 35°C for 4 weeks (exposed to air). The ratio of limonene oxide to limonene was used to monitor oxidation using gas chromatography. This study showed a substantial increase in rate of oxidation of the spray dried powder from the table top spray dryer with the standard commercial collection chamber and much less in case of an extended collection chamber. The powder from the respective drying chamber also showed a higher rate of oxidation in comparison to its collection chamber. Thus, we urge researchers studying heat damage (e.g., oxidation) of powders produced on the table top dryers to be conscious of overestimating heat damage during drying.  相似文献   

10.
S. Pang 《Drying Technology》2000,18(7):1433-1448
In the production of MDF, wet resinated fibre must be dried to its target moisture content, normally 9 to 11%, before compaction into a board by hot pressing. Fibre drying can be interpreted as an incorporated process involving gas-solid two phase-flow, inter-component transfer, and heat and mass transfer within the fibre. Based on these mechanisms, a mathematical model has been developed to simulate the MDF fibre drying process. From the model, fibre moisture content, air temperature and air humidity along the dryer length can be predicted and factors affecting the drying rate examined. The model can be employed to optimise drying conditions and to evaluate improvements in dryer design. A case study of drying improvement in reduction of dryer emissions and heat consumption is given to demonstrate the potential application of the developed dryer model.  相似文献   

11.
S. Pang 《Drying Technology》2013,31(7):1433-1448
ABSTRACT

In the production of MDF, wet resinated fibre must be dried to its target moisture content, normally 9 to 11%, before compaction into a board by hot pressing. Fibre drying can be interpreted as an incorporated process involving gas-solid two phase-flow, inter-component transfer, and heat and mass transfer within the fibre. Based on these mechanisms, a mathematical model has been developed to simulate the MDF fibre drying process. From the model, fibre moisture content, air temperature and air humidity along the dryer length can be predicted and factors affecting the drying rate examined. The model can be employed to optimise drying conditions and to evaluate improvements in dryer design. A case study of drying improvement in reduction of dryer emissions and heat consumption is given to demonstrate the potential application of the developed dryer model.  相似文献   

12.
The novel low-cost band thermodynamic dryer equipped with a solar collector, a parabolic focusing collector, a heat exchanger, screw fan, and a drying cabinet with a band was designed and tested. The maximum temperature in the solar collector reached 85°C, which was 55°C above the ambient temperature. The required drying time was 4.5 h, much reduced from the traditional solar drying time of 48 h. The final moisture content of the Roselle calyx was 12% w.b., which is the recommended storage moisture content. Measurements of ambient temperature and humidity, air temperature, and relative humidity inside the dryer as well as solids moisture loss-in-weight data are employed as a means to study the performance of the dryer. Solar drying was compared with conventional sun drying and heated air drying, using the following evaluation criteria: drying time, dried Roselle color, texture, taste, and production cost. For evaluation, a model-based Technique for Order Preference by Similarity to Ideal Solution (TOPSIS) methodology was used. After the evaluation, the proposed continuous solar dryer was found to be better than conventional drying and heated air drying due to slower drying rate and better quality of the dried Roselle.  相似文献   

13.
《Drying Technology》2013,31(1-2):305-315
Abstract

Moisture is one of the most deteriorating factors of buildings. The deteriorating effect of moisture occurs mainly during the drying phase, not in the wetting phase. Environmental factors, such as air temperature, air humidity, and air velocity affect drying. An experimental air dryer of controlled drying air conditions was used to investigate the drying performance of 4 stone materials, 2 bricks, and 6 plasters. Drying kinetics was examined at 3 air temperatures, 5 air humidities, and 3 air velocities. A first-order kinetics model was obtained in which the drying time constant was a function of the drying conditions, and the equilibrium material moisture content was described by the modified Oswin equation. The parameters of the proposed model were found to be affected strongly by the material characteristics.  相似文献   

14.
《Drying Technology》2013,31(8):1789-1805
Fibre drying is an important process in production of medium density fibreboard (MDF) which consumes a large amount of energy, affects product quality and, without appropriate control, causes environmental concerns. Based on fundamental knowledge of wood fibre-water relationships and heat/mass transfer, a mathematical model has been developed to simulate the MDF fibre drying processes. The model is able to predict fibre moisture content, air temperature and air humidity along the dryer length. After validation against the measured air temperature and humidity, the model has been extended to include both fibre drying and fibre conditioning, the latter occurring in the dry fibre conveyers. Due to potential benefits in reducing emissions of volatile organic compounds (VOCs) and in improving panel quality, lower drying temperatures are more desirable than higher temperatures. However, in order to achieve the target moisture content after drying, a higher air velocity is needed or a second-stage dryer is added. The model was employed to determine the air velocity required and to assist in designing a second dryer for further drying and recovery of moist vapour and heat. A further study was undertaken to investigate fibre drying or fibre conditioning in the fibre conveyers and, once again, the fibre drying model was used to determine the air conditions.  相似文献   

15.
S. Pang 《Drying Technology》2001,19(8):1789-1805
Fibre drying is an important process in production of medium density fibreboard (MDF) which consumes a large amount of energy, affects product quality and, without appropriate control, causes environmental concerns. Based on fundamental knowledge of wood fibre-water relationships and heat/mass transfer, a mathematical model has been developed to simulate the MDF fibre drying processes. The model is able to predict fibre moisture content, air temperature and air humidity along the dryer length. After validation against the measured air temperature and humidity, the model has been extended to include both fibre drying and fibre conditioning, the latter occurring in the dry fibre conveyers. Due to potential benefits in reducing emissions of volatile organic compounds (VOCs) and in improving panel quality, lower drying temperatures are more desirable than higher temperatures. However, in order to achieve the target moisture content after drying, a higher air velocity is needed or a second-stage dryer is added. The model was employed to determine the air velocity required and to assist in designing a second dryer for further drying and recovery of moist vapour and heat. A further study was undertaken to investigate fibre drying or fibre conditioning in the fibre conveyers and, once again, the fibre drying model was used to determine the air conditions.  相似文献   

16.
R. Dhib 《Drying Technology》2013,31(1):97-105
The article surveys the drying of solids materials and polymer solutions when infrared radiation (IR) is employed as the main heating source. The study reviews the current research trends of IR drying of specific applications. A case study similar to an industrial setting is presented to illustrate a model development and control scheme of an IR drying unit. The design and online implementation of an internal model controller (IMC) is discussed. The study demonstrates the controller capabilities to suppress random variations of the moisture content in the material entering the dryer. Simulation results also showed the success of model predictive control (MPC) multivariable controller ability, while handling process interactions and process constraints, to track setpoint changes in the humidity and temperature of the material exiting the dryer and to reject unmeasured stochastic disturbances in the inlet humidity stream.  相似文献   

17.
《Drying Technology》2013,31(8):1949-1960
Samples of banana were dried in a two-stage heat pump dryer capable of producing stepwise control of the inlet drying air temperature while keeping absolute humidity constant. Two stepwise air temperature profiles were tested. The incremental temperature step change in temperature of the drying air about the mean air temperature of 30 °C was 5 °C. The total drying time for each temperature-time profile was about 300 minutes. The drying kinetics and color change of the products dried under these stepwise variation of the inlet air temperature were measured and compared with constant air temperature drying. The stepwise air temperature variation was found to yield better quality product in terms of color of the dried product. Further, it was found that by employing a step-down temperature profile, it was possible to reduce the drying time to reach the desired moisture content.  相似文献   

18.
A lab model vacuum-assisted solar dryer was developed to study the drying kinetics of tomato slices (4, 6, and 8 mm thicknesses) compared with open sun drying under the weather conditions of Montreal, Canada. The drying study showed that the time taken for drying of tomato slices of 4, 6, and 8 mm thicknesses from the initial moisture content of 94.0% to the final moisture content of around 11.5 ± 0.5% (w.b.) was 360, 480, and 600 min in vacuum-assisted solar dryer and 450, 600, and 750 min in open sun drying, respectively. During drying, it was observed that the temperature inside the vacuum chamber was increased to 48°C when the maximum ambient temperature was only 30°C. The quality of tomato slices dried under vacuum-assisted solar dryer was of superior quality in terms of color retention and rehydration ratio. The drying kinetics using thin-layer drying models and the influence of weather parameters such as ambient air temperature, relative humidity, solar insolation, and wind velocity on drying of tomato slices were evaluated.  相似文献   

19.
Thin-layer drying experiments under controlled conditions were conducted for green sweet pepper in heat pump dryer at 30, 35, and 40°C and hot air dryer at 45°C with relative humidities ranging from 19 to 55%. The moisture content of sweet pepper slices reduced exponentially with drying time. As the temperature increased, the drying curve exhibited a steeper slope, thus exhibiting an increase in drying rate. Drying of green sweet pepper took place mainly under the falling-rate period. The Page equation was found to be better than the Lewis equation to describe the thin-layer drying of green sweet pepper with higher coefficient of determination and lower root mean square error. Drying in heat pump dryer at 40°C took less time with higher drying rate and specific moisture extraction rate as compared to hot air drying at 45°C due to lower relative humidity of the drying air in a heat pump dryer though the drying air temperature was less. The retention of total chlorophyll content and ascorbic acid content was observed to be more in heat pump–dried samples with higher rehydration ratios and sensory scores. The quality parameters showed a declining trend with increase in drying air temperature from 30 to 45°C. Keeping in view the energy consumption and quality attributes of dehydrated products, it is proposed to dry green sweet pepper at 35°C in heat pump dryer.  相似文献   

20.
The performance and operating characteristics of a low temperature re-circulating cabinet dryer using a dehumidifier loop were studied using alfalfa. Chopped alfalfa, initially at 70% moisture content, was dried to 10% moisture content in the dryer. Two dryer setups were used. The dryers in each case had a partitioned cabinet with trays of material on one side and a stack of one or two small household dehumidifiers on the other side. Air was re-circulated through the material from bottom to the top and back through the dehumidifiers. Two drying configurations were tested. In one, the material was left on the trays until drying was complete (batch or fixed tray drying). In the other configuration, the trays were moved from top to bottom, introducing a new tray at the top while removing an old tray from bottom. Drying air temperature ranged from 25 to 45°C. The average air velocity through the material was 0.38 m/s. Alfalfa chops dried in 5 h in the fixed tray drying and in 4 h in the moving tray drying. The specific moisture extraction rate ranged from 0.35 to 1.02 kg/kWh for batch drying and stayed at an average value of 0.50 kg/kWh for continuous/moving tray drying.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号