首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
以甘蔗渣为原料,通过高温限氧和氧化钙改性制备钙改性甘蔗渣活性炭。研究了钙改性甘蔗渣活性炭对Cr(Ⅵ)吸附的影响因素,并通过吸附等温线模型和吸附动力学,进一步讨论其吸附机理。由实验数据可知,氧化钙改性有利于提高甘蔗渣炭对Cr(Ⅵ)的吸附效果。改性后,甘蔗渣活性炭的最佳吸附条件为:pH=2,吸附时间8h,吸附剂添加量为0.2 g,Cr(Ⅵ)的吸附浓度为20 mg·L~(-1),此时吸附容量达到2.89 mg·g~(-1)。吸附等温模型的拟合结果表明,改性后,甘蔗渣炭对Cr(Ⅵ)的吸附符合Freundlich吸附等温模型。吸附动力学模型拟合结果表明,改性后,甘蔗渣炭对Cr(Ⅵ)的吸附可用Lagergren准二级动力学模型表示,吸附过程存在物理扩散和化学吸附。  相似文献   

2.
以椰壳活性炭为原料,进行氯化铁改性,探究其对2,4-二氯苯酚吸附性能影响的研究。通过静态吸附实验得到了最佳改性条件,使得对2,4-二氯苯酚吸附性能进一步得到提升,并结合实际水体酸碱性探究,对模拟废水实验进行了pH探究,进一步优化了材料对实际水体的适用性。研究表明,氯化铁浓度为0.8 mol/L、改性时间为24 h条件下改性得到的炭材料(BC-F)吸附性能最佳,吸附剂的最佳使用量应为0.04 g,吸附过程应在弱酸或碱性环境中进行,在实际水体中实用性较好;且该吸附过程符合准一级动力学和Freundlich等温吸附方程,以化学吸附为主。  相似文献   

3.
采用硝酸-高锰酸钾活化法对制备的柚子皮生物炭进行改性处理,并将其作为吸附剂探究了其对亚甲基蓝的吸附性能。通过静态吸附实验考察了亚甲基蓝溶液的pH、初始浓度、吸附时间、吸附温度、吸附剂投加量等条件对吸附效果的影响,并确定了该吸附过程的吸附动力学、吸附等温线和吸附热力学。实验结果表明,在改性生物炭投加量为0.6 g/L、pH 7、亚甲基蓝溶液浓度为100 mg/L、50℃吸附180 min的条件下,改性生物炭对亚甲基蓝的吸附容量为68.28 mg/g。通过准二级动力学方程和Freundlich方程更好的描述了该吸附过程,同时吸附热力学表明该吸附过程是一个自发吸热过程。  相似文献   

4.
采用铁盐改性后的水淬渣对稀土冶炼过程中的氯铵生产废水进行了吸附处理,研究了最佳吸附工艺条件。结果表明,室温下,当利用改性水淬渣在转速为120 r·min-1、处理100 mL氨氮质量浓度为127 mg·L-1的氯铵废水时,优化工艺条件为:改性水淬渣投加量1.0 g、pH为8、振荡吸附1 h,此条件下对氨氮的去除率达到了80.66%。改性水淬渣吸附氨氮的行为符合Temkin等温方程,方程为qe/(mg·g-1)=15.97ln[ρe/(mg·L-1)]-43.01,相关系数为0.929 2。  相似文献   

5.
研究草酸和磷酸两种酸性条件下甘蔗渣水热炭对模拟废水中的Cr(Ⅵ)的吸附效果,并采用SEM、FTIR和BET等方法对两甘蔗渣进行表征。结果显示,比表面积表现为磷酸条件下甘蔗渣基水热炭>草酸条件下甘蔗渣基水热炭>普通甘蔗渣;两种水热炭较普通甘蔗渣的含氧官能团种类及数量大大增加,吸附能力提高。吸附量表现为磷酸条件下甘蔗渣基水热炭>草酸条件下甘蔗渣基水热炭>普通甘蔗渣。Langmuir等温吸附模型能更好地反应吸附过程,吸附过程遵循拟二级动力学方程。  相似文献   

6.
研究草酸和磷酸两种酸性条件下甘蔗渣水热炭对模拟废水中的Cr(Ⅵ)的吸附效果,并采用SEM、FTIR和BET等方法对两甘蔗渣进行表征。结果显示,比表面积表现为磷酸条件下甘蔗渣基水热炭>草酸条件下甘蔗渣基水热炭>普通甘蔗渣;两种水热炭较普通甘蔗渣的含氧官能团种类及数量大大增加,吸附能力提高。吸附量表现为磷酸条件下甘蔗渣基水热炭>草酸条件下甘蔗渣基水热炭>普通甘蔗渣。Langmuir等温吸附模型能更好地反应吸附过程,吸附过程遵循拟二级动力学方程。  相似文献   

7.
探究碱性改性的生物质炭对印染工业污水中甲基橙的吸附性能。结果表明:改性竹笋生物质炭具有大的比表积和丰富的孔结构,其对15 mL 30 mg·L-1的甲基橙在210 min后达到平衡,最佳投加量和最大吸附量分别为7 mg·L-1和64.1 mg·g-1,吸附动力学更加符合准二级动力学模型。  相似文献   

8.
利用油茶果壳制备了一种生物质炭微球,并且对其进行热改性后用于对水中结晶紫的吸附去除研究。BET表征结果表明改性后的炭微球中有较多中孔结构,比表面积可达349.240m~2/g。吸附实验考察了溶液吸附动力学、溶液pH值的影响和等温吸附。实验结果表明在结晶紫溶液的pH为8时其吸附效果最佳,动力学实验结果表明在120min时油茶籽壳生物质炭微球对结晶紫的吸附可达到吸附平衡,且动力学拟合的结果显示其动力学吸附行为更符合拟二级动力学模型。吸附等温线数据较符合Langmuir模型(R20.96),在25℃下,热改性处理后的油茶籽壳生物质炭微球吸附结晶紫的最大吸附量达到了40.1mg/g。  相似文献   

9.
采用改性沸石处理含铬废水,研究沸石的最佳改性工艺以及处理废水的最佳条件,通过吸附热力学研究探讨改性沸石的吸附行为。实验结果表明:原沸石的最佳改性浓度为0.4mol/L的氯化铁溶液,最佳投加量为1.5g,最佳pH值为5。原沸石对铬的平衡吸附量为0.2873mg/g,而改性沸石对铬的平衡吸附量为0.7492mg/g,Langmuir方程比Freundlich方程更好地描述铬在原沸石和改性沸石上的吸附行为。  相似文献   

10.
用磷酸改性核桃壳吸附去除模拟废水中的氨氮。探讨了改性核桃壳的粒径、溶液pH、吸附时间、吸附温度、吸附剂投加量、氨氮的初始浓度等对吸附NH_3-N效果的影响。结果表明,吸附处理100 mL浓度50 mg/L的氨氮模拟水样的最佳吸附条件:温度25℃,0.6~1.0 mm粒径的磷酸改性核桃壳1.0 g、介质pH 8.0,吸附时间60 min。在此条件下,氨氮的去除率可达70%左右。Langmuir、Freundlich等温吸附方程和拟二阶动力学模型能很好地描述吸附过程。  相似文献   

11.
镁浸渍生物炭吸附氨氮和磷:制备优化和吸附机理   总被引:4,自引:0,他引:4       下载免费PDF全文
利用废弃的木薯杆制备了载镁的生物炭吸附剂。以氨氮、磷为目标污染物,采用控制变量法研究了不同镁盐改性、MgCl2浓度、碳化温度、固液比和碳化时间对氨氮、磷吸附性能的影响,制备最具吸附性能的载镁木薯秆基生物炭(Mg-BC),进行批量吸附氨氮和磷实验。利用等温模型(Langmuir和Freundlich模型)和动力学模型(准一级动力学、准二级动力学和颗粒内扩散模型)探究其吸附特性,在其吸附特性研究的基础上,运用FTIR、XRD、SEM-EDS、XPS等表征手段对其吸附机理进行探讨。结果表明,Mg-BC对氨氮和磷的吸附过程均符合Freundlich模型和准二级动力学模型,为多分子层的化学吸附,理论饱和吸附量分别为43.48 mg·g-1和96.00 mg·g-1。结合表征结果推测,Mg-BC吸附氨氮、磷主要通过官能团作用、络合沉淀和离子交换等多过程协同完成。  相似文献   

12.
在对NaCl改性沸石吸附处理模拟氨氮水单因素研究基础上,对该吸附过程的吸附等温线及动力学模型进行了分析。实验结果表明:在最佳改性条件下得到的NaCl改性沸石在室温(27℃),初始氨氮浓度30 mg/L,溶液pH值6,投加量5 g/L以及反应时间90 min时,氨氮去除率高达90.7%,吸附剂的吸附容量为8.97 mg/g。且吸附过程更符合Langmuir等温吸附模型,其相关系数为0.9973。吸附动力学分析表明,NaCl改性沸石吸附模拟氨氮水更符合准二级动力学模型,其相关系数为0.9988。  相似文献   

13.
甘蔗渣炭对废水中Cr(Ⅵ)的吸附   总被引:1,自引:0,他引:1  
以甘蔗渣为原料,在真空氛围下炭化,制得甘蔗渣炭。采用SEM、FTIR、BET等方法对炭化前后的甘蔗渣进行表征,研究了甘蔗渣炭对废水中Cr(Ⅵ)的吸附效果。结果显示,炭化前甘蔗渣孔结构较少,结构较平整;炭化后甘蔗渣出现大量孔隙,比表面积大大增加。甘蔗渣化学结构发生了变化,产生新的官能团,吸附效果大大提高。炭化甘蔗渣吸附废水中Cr(Ⅵ)的最佳工艺条件为:吸附温度25℃,初始废水p H=1,炭化后甘蔗渣加入量14 g/L,吸附时间120 min,转速120 r/min。在此条件下处理初始浓度50 mg/L的废水时,去除率达到94. 5%,最大吸附量4. 805 mg/g。Langmuir等温吸附模型、拟二级动力学方程能更好的反应吸附过程。  相似文献   

14.
《应用化工》2022,(5):874-877
采用浸渍法制备一系列过渡金属(Zn,Fe,Cu)改性活性炭吸附剂,并探讨其吸附污水中氨氮的性能。结果表明,过渡金属的添加能在一定程度上提高活性炭吸附氨氮性能,其中铜为最佳改性元素。分别采用准一级动力学方程、准二级动力学方程和颗粒内扩散方程对改性活性炭吸附氨氮行为进行拟合。结果显示改活性炭对氨氮的吸附过程可用Langmuir吸附等温方程较好地拟合,在温度为25℃时,单分子层饱和吸附量为7.19 mg/g,其吸附动力学较符合准二级反应动力学方程。  相似文献   

15.
采用单因素分析法,实验研究了不同改性方法、p H、温度、时间、吸附剂用量等影响因素对改性废砖吸附氨氮的性能影响,并实验考察了改性废砖对氨氮的等温吸附模型和吸附动力学数据。结果表明,相同实验条件下,钠改性废砖对氨氮的去除率更高;p H=9.5,Na-废砖与氨氮的投加质量比率为200:1时,Na-废砖对氨氮的去除率高;升高温度可以提高Na-废砖对氨氮的吸附性能;在25℃,p H=9.5,吸附时间1 h,投加比例为200:1的条件下,氨氮去除率可达98.4%。Na-废砖对氨氮的吸附符合Freundlich等温吸附模型和Langergren准一级反应动力学方程,吸附容量为5.03 mg/g。  相似文献   

16.
用磷酸改性核桃壳吸附去除模拟废水中的氨氮。探讨了改性核桃壳的粒径、溶液pH、吸附时间、吸附温度、吸附剂投加量、氨氮的初始浓度等对吸附NH_3-N效果的影响。结果表明,吸附处理100 mL浓度50 mg/L的氨氮模拟水样的最佳吸附条件:温度25℃,0.61.0 mm粒径的磷酸改性核桃壳1.0 g、介质pH 8.0,吸附时间60 min。在此条件下,氨氮的去除率可达70%左右。Langmuir、Freundlich等温吸附方程和拟二阶动力学模型能很好地描述吸附过程。  相似文献   

17.
沼渣制备生物炭吸附沼液中氨氮   总被引:1,自引:0,他引:1  
以生物产甲烷的副产物沼渣为原料,用5种不同的方法通过化学活化法制备生物炭,实验结果表明5种生物炭对沼液中的氨氮都有吸附效果,而氢氧化钾活化制备的生物炭(KOH-CC)对氨氮的吸附效果相对较好,吸附剂对氨氮的吸附符合准二级吸附动力学,吸附等温线表现为Langmuir型,通过拟合计算最大吸附容量能达到120 mg·g-1。对生物炭进行BET、扫描电镜及红外等表征,分析了KOH-CC生物炭吸附氨氮过程的作用机理。  相似文献   

18.
选用樱花为原料制备新型生物质炭,应用其吸附含Cr(Ⅵ)的模拟废水,用单因素静态实验对影响吸附的5个主要因素(吸附剂投加量、pH值、Cr(Ⅵ)初始浓度、反应温度和吸附时间)进行分析,并结合吸附过程的动力学特征以及特性表征,对吸附机理进行了初步探究。结果表明,樱花生物炭含有较多中孔,表面官能团如酮基、羧基和C=C能作为电子供体将Cr(Ⅵ)还原为Cr(Ⅲ);樱花生物炭的最佳吸附条件为樱花炭投加量为1 g/L,pH=2,Cr(Ⅵ)浓度为50 mg/L,吸附时间为4 h,反应温度为25℃,在此条件下,吸附量为49.52 mg/g;拟合系数表明准二级动力学方程能更好地反映樱花炭的吸附过程,说明以化学吸附为主;樱花炭的吸附过程更符合Langmuir等温线方程,说明其是单层吸附,最大吸附量为49.78 mg/g;可见,樱花炭在吸附Cr(Ⅵ)方面有一定的发展前景。  相似文献   

19.
改性活性炭吸附污水中氨氮的性能   总被引:1,自引:0,他引:1  
《应用化工》2015,(5):874-877
采用浸渍法制备一系列过渡金属(Zn,Fe,Cu)改性活性炭吸附剂,并探讨其吸附污水中氨氮的性能。结果表明,过渡金属的添加能在一定程度上提高活性炭吸附氨氮性能,其中铜为最佳改性元素。分别采用准一级动力学方程、准二级动力学方程和颗粒内扩散方程对改性活性炭吸附氨氮行为进行拟合。结果显示改活性炭对氨氮的吸附过程可用Langmuir吸附等温方程较好地拟合,在温度为25℃时,单分子层饱和吸附量为7.19 mg/g,其吸附动力学较符合准二级反应动力学方程。  相似文献   

20.
以养殖底泥为原料,分别采用碱提酸解法和水热炭化法制备腐植酸和生物炭吸附剂,并以养殖水体中氨氮作为目标污染物,研究腐植酸和生物炭的氨氮吸附性能。结果表明:腐植酸和生物炭产率分别为3.86%和13.46%(以底泥湿基计),比表面积分别为11.54 m~2·g~(-1)和24.76 m~2·g~(-1)。准二级动力学方程能更好地拟合腐植酸和生物炭吸附氨氮的动力学特征。当腐植酸加量为2.00 g·L~(-1)、生物炭加量为3.00 g·L~(-1)时,其对氨氮的平衡吸附量增幅趋缓;当氨氮初始浓度分别增至150 mg·L~(-1)和200 mg·L~(-1)时,腐植酸和生物炭对氨氮的平衡吸附量增幅趋缓;生物炭比腐植酸表现出更强的吸附能力。该研究为养殖底泥的资源化利用及养殖废水的处理提供了参考。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号