首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 322 毫秒
1.
王照锋 《电镀与涂饰》2014,33(15):656-658
通过复合电刷镀在20钢基体表面制备镍铁–立方氮化硼(CBN)复合镀层。研究了施镀电压、镀液温度及镀笔速率对复合镀层中CBN含量的影响,分析了镀层中CBN含量与耐磨性之间的关系。复合电刷镀NiFe–CBN的镀液组成和最佳工艺条件为:NiSO4·6H2O 270~300 g/L,FeCl2·2H2O 23~27 g/L,H3BO326~30 g/L,Na3C6H5O7·2H2O 20~30 g/L,糖精2~3 g/L,十六烷基三甲基溴化铵0.2~0.3 g/L,pH 3.2~4.0,电压14 V,温度50°C,镀笔速率15 m/min,时间100~120 min。在最佳工艺下所得镀层的CBN质量分数为9.8%,显微硬度为770 HV,耐磨性和结合力良好。  相似文献   

2.
采用两步复合镀法在45钢上制备了镍-磷-金刚石复合镀层,即:先采用基础镀液(由NiSO_4·6H_2O 25 g/L、Na H_2PO_2·H_2O25 g/L、CH_3COONa·3H_2O 15 g/L和Na_3C_6H_5O_7·2H_2O 10 g/L组成,pH 4~5,温度80~85℃)化学镀镍-磷合金30 min,再在基础镀液中加入0.4 g/L金刚石微粒(平均粒径10μm),在机械间歇搅拌(搅拌10 s后停10 s)下复合镀10 min。然后在不同温度(150~450℃)下热处理1 h,研究热处理温度对复合镀层显微硬度、组织结构和摩擦学性能的影响。经350℃热处理的镍-磷-金刚石复合镀层的显微硬度为1 100 HV,摩擦学性能与进口摩擦垫片相当。  相似文献   

3.
采用脉冲电沉积法在碳素工具钢表面制备Cu-Sn-Ni-PTFE复合镀层。镀液配方和工艺为:K_4P_2O_7·3H_2O 266.5 g/L,Cu_2P_2O_7·4H2O 20 g/L,NiSO_4·4H_2O 0.06~0.14 mol/L,KNaC_4H_4O_6·4H_2O 31.6 g/L,Na_2SnO_3·3H_2O 40 g/L,KNO_3 40 g/L,Na_3C_6H_5O_7·2H_2O 20 g/L,PTFE 10 g/L,pH 9.5~10.0,温度35~40℃,电流密度2.5 A/dm~2,脉冲频率3 000 Hz,占空比60%,转速100 r/min,时间1 h。研究了镀液中Ni~(2+)浓度对复合镀层表面形貌、组成、显微硬度及摩擦磨损性能的影响。结果表明,镀液中Ni~(2+)浓度为0.1 mol/L时,Cu-Sn-Ni-PTFE镀层表面均匀、致密,显微硬度高达391 HV,耐磨性最好。  相似文献   

4.
采用单液法电刷镀制备200μm厚的Ni/Co多层膜镀层。镀液配方和工艺为:NiSO_4·7H_2O 250 g/L,CoSO_4·7H_2O 17~50 g/L,H_3BO_3 35 g/L,NaCl 20 g/L,十二烷基硫酸钠0.1~0.5 g/L,pH 2.0~5.0,温度40~60℃。通过单因素试验确定镀液的CoSO_4·7H_2O与NiSO_4·7H_2O的质量浓度比为1∶10,镍、钴单层的沉积电压分别为9.0 V和3.5 V。通过对比不同厚度单层膜的Ni/Co多层膜镀层的表面形貌、元素组成、表面粗糙度、显微硬度和耐磨性能,分析单层膜厚度变化对Ni/Co多层膜镀层性能的影响,最终确定较优单层膜厚度为4μm。所得Ni/Co多层膜镀层的显微硬度为496.8 HV,摩擦因数为0.42,耐磨性最好。  相似文献   

5.
以镀液稳定性、纳米TiO_2在镀液中的分散性、沉积速率以及复合镀层的磷含量、TiO_2颗粒含量和显微硬度为评价指标,研究了镀液中硫酸铜添加量对Ni-P-纳米TiO_2复合化学镀的影响。镀液配方和工艺为:NaH_2PO_2·H_2O 32 g/L,NiSO_4·6H_2O 26 g/L,一水合柠檬酸20 g/L,CH_3COONa·3H_2O 15 g/L,表面活性剂20~40 mg/L,纳米TiO_2 1~2 g/L,CuSO_4·5H_2O 2~12 mg/L,温度(88±1)℃,pH=4.8±0.2,时间1 h。结果表明,镀液中添加适量硫酸铜后,沉积速率加快,复合镀液的稳定性和纳米TiO_2在其中的分散性改善。所得Ni-P-纳米TiO_2复合镀层的耐蚀性得到改善,显微硬度提高,孔隙率降低。硫酸铜的较优添加量为4mg/L。  相似文献   

6.
考察了pH对45钢上化学复合镀Ni–P–聚四氟乙烯(PTFE)沉积速率和镀层孔隙率、磷含量、表面形貌、耐蚀性、显微硬度和摩擦因数的影响。镀液组成和工艺条件为:NiSO_4·6H_2O 25 g/L,NaH_2PO_2·H_2O 30 g/L,无水乙酸钠20 g/L,柠檬酸20 g/L,硫脲2 mg/L,氟碳型表面活性剂18 mg/L,PTFE 1.0 g/L,温度85℃,时间1 h。pH为5.0时,沉积速率为15.93μm/h,所得为高磷(质量分数8.34%)复合镀层,其显微硬度为163.3 HV,摩擦因数0.25,能耐中性盐雾腐蚀24.5 h。  相似文献   

7.
采用电刷镀技术在45钢表面制备了镍-石墨烯(GE)复合镀层。镀液配方和工艺条件为:NiSO_4·6H_2O 220 g/L,CH_3COONH_4 40 g/L,(NH_4)_3C_6H_5O_7 45 g/L,GE 0.5 g/L,NH_3·H_2O 100~130 mL/L,十二烷基硫酸钠适量,pH 7.3~7.5,电压+12 V,镀笔速率10~12 m/min,时间5 min。采用扫描电镜(SEM)、能谱仪(EDS)、拉曼光谱仪、X射线衍射仪(XRD)和激光热导仪表征了Ni–GE复合镀层的微观结构、GE分布和导热性。与纯Ni镀层相比,Ni–GE复合镀层更致密,晶粒尺寸更小。复合电刷镀Ni–GE层的沉积速率(8.4μm/min)低于电刷镀Ni层的沉积速率(10.4μm/min)。Ni–GE复合镀层在25℃与100℃下的热导率较Ni镀层分别提高了11.5%和25.8%,导热性更优。  相似文献   

8.
为提高巴氏合金的耐磨性,将石墨烯作为增强相添加到由240g/L NiSO_4·6H_2O、45 g/L NiCl_2·6H_2O、30 g/L H_3BO_3、20 g/L Na_2SO_4和0.1 g/L十二烷基苯磺酸钠组成的镀镍液中,在ZSnSb8Cu4合金上电沉积得到镍-石墨烯复合镀层。采用扫描电镜、X射线衍射仪和摩擦磨损试验仪考察了镍-石墨烯复合镀层的表面形貌、组织结构和耐磨性。结果表明,复合电沉积镍-石墨烯能够有效提高巴氏合金基体的耐磨性,而镀液中石墨烯添加量的增大能使镀层晶粒细化,显微硬度升高,摩擦因数和磨损率减小。当镀液中石墨烯的质量浓度为400 mg/L时,镍-石墨烯复合镀层的显微硬度较高,耐磨性最优。  相似文献   

9.
采用复合电镀工艺在纯铜棒表面制备了Ni–WC复合镀层。镀液组成和工艺条件为:NiSO_4·6H_2O 250~300 g/L,NiCl_2·6H_2O 40~50 g/L,H_3BO_3 30~45 g/L,十二烷基硫酸钠0.05 g/L,WC微粒(平均粒径400 nm)25~45 g/L,温度30~50°C,电流密度2.0~4.0 A/dm2,时间4 h。研究了WC添加量、阴极电流密度及镀液温度对Ni–WC复合镀层的WC含量和显微硬度的影响。WC添加量为35 g/L,镀液温度为40°C和阴极电流密度为3.0 A/dm~2,所得Ni–WC复合镀层的厚度为103μm,WC质量分数为29.95%,显微硬度为322.4 HV。分别采用Ni–WC复合电极、纯铜电极和纯镍电极为工具电极,对W_7Mo_4Cr_4V_2Co_5高速钢进行电火花加工。结果表明,最佳工艺下制备的Ni–WC复合电极的损耗率分别为纯铜电极和纯镍电极损耗率的72%和62%。  相似文献   

10.
采用包覆有50%(质量分数)Ni的C_(r3)C_2微米颗粒(粒径3~5μm)为第二相,以脉冲喷射电沉积制备Co–C_(r3)C_2复合镀层。镀液组成和工艺参数为:CoSO_4·7H_2O 430 g/L,C_(r3)C_2 200 g/L,H_3BO_3 30 g/L,NaCl 5 g/L,十六烷基三甲基溴化铵适量,pH=4,温度40°C,电压18 V,镀液流量2.4 L/min,喷头移动速率1.2 mm/s。研究了脉冲参数对复合镀层颗粒复合量、表面粗糙度、显微硬度以及耐磨性的影响,并探讨了颗粒复合量对镀层性能的影响。C_(r3)C_2颗粒的复合量越高,复合镀层的显微硬度就越高,耐磨性也越好,但表面粗糙度增大。最优脉冲参数为:占空比30%,脉冲周期200 ms。所得Co–C_(r3)C_2复合镀层的颗粒含量达11.98%,显微硬度为542.6 HV,摩擦因数为0.443。C_(r3)C_2颗粒在镀层中分布均匀,与基质金属结合牢固。  相似文献   

11.
以MoS_2作为增强相添加到由240 g/L NiSO_4·6H_2O、45 g/L NiCl_2·6H_2O、30 g/L H_3BO_3、20 g/L Na_2SO_4和0.2 g/L十六烷基三甲基溴化铵组成的镀液中,在45钢表面电沉积得到Ni–MoS_2复合镀层。采用扫描电镜、X射线衍射仪和摩擦磨损试验仪考察了MoS_2添加量对Ni–MoS_2复合镀层的表面形貌、相结构和耐磨性的影响。随着MoS_2添加量的增大,Ni–MoS_2复合镀层表面凸起的胞状结构增多,显微硬度先增大后减小,摩擦因数降低。当MoS_2的添加量为2 g/L时,所得Ni–MoS_2复合镀层的显微硬度为860.5 HV,耐磨性较佳。  相似文献   

12.
采用电刷镀技术在45钢上制备了Ni-Co-纳米Al_2O_3复合镀层,镀液组成和工艺条件为:NiSO_4·7H_2O 100~125 g/L,CoSO_4·7H_2O 50g/L,NiCl_2·6H_2O 40g/L,HCOOH 18g/L,CH_3COOH 48g/L,盐酸150g/L,硫酸肼0.1g/L,纳米Al_2O_3 20g/L,正接,电压10~12V,镀笔速率5~8m/min,时间30min。通过塔菲尔曲线测试、电化学阻抗谱分析和浸泡腐蚀试验对比了电刷镀Ni-Co合金镀层、Ni-Co-纳米Al_2O_3复合镀层和挂镀硬铬层在5%NaCl溶液中的耐蚀性。结果表明,Ni-Co-纳米Al_2O_3复合镀层表面平整、均匀、致密,纳米Al_2O_3均匀分布,耐蚀性优于Ni-Co合金镀层和硬铬镀层,有望取代硬铬镀层在中性腐蚀环境中的应用。  相似文献   

13.
在45钢上制得复合化学镀镍–磷–多壁碳纳米管(MWNTs)镀层,镀液配方及工艺条件为:NiSO_4·6H_2O 30 g/L,NaH_2PO_2·H_2O 25 g/L,乙酸钠15 g/L,柠檬酸钠15 g/L,乳酸25 mg/L,醋酸铅15 mg/L,MWNTs 1 g/L,柠檬酸0.5 g/L,pH 4.5~4.7,温度(85±1)℃,搅拌速率200 r/min,时间2 h。利用扫描电镜、X射线衍射仪分析了复合镀层的表面形貌和结构,并采用多功能材料表面性能测试仪对复合镀层的摩擦磨损行为进行研究。结果表明,Ni–P–MWNTs复合镀层是非晶结构,MWNTs均匀地嵌埋在基质镀层中,使得Ni–P–MWNTs复合镀层的显微硬度和耐摩擦磨损性能得到显著提高。  相似文献   

14.
在45钢上制得镍–磷–石墨烯化学复合镀层,镀液配方和工艺条件为:NiSO_4·6H_2O 30g/L,NaH_2PO_2·H_2O 25g/L,乙酸钠15g/L,柠檬酸钠15g/L,乳酸25mg/L,乙酸铅15mg/L,石墨烯100mg/L,APEO80mg/L,pH4.6,温度82°C,超声波功率150W,时间2h。利用扫描电镜分析了复合镀层的表面形貌,采用多功能材料表面性能测试仪对复合镀层的摩擦磨损行为进行研究,通过塔菲尔曲线和电化学阻抗谱测量研究了其在3.5%NaCl溶液中的电化学腐蚀行为。结果表明,镍–磷–石墨烯复合镀层属于非晶态结构,石墨烯均匀地嵌埋在基质镀层中,使镍–磷–石墨烯复合镀层的显微硬度、耐磨性和耐蚀性均显著提高。  相似文献   

15.
采用化学镀法在45钢上制得镍-磷-石墨烯复合镀层,基础镀液组成和工艺条件为:NiSO_4·6H_2O 30g/L,NaH_2PO_2·H_2O 25 g/L,CH_3COONa·3H_2O(乙酸钠)15g/L,Na_3C_6H_5O_7·2H_2O(柠檬酸钠)15g/L,乳酸25mg/L,Pb(CH_3COO)_2·3H_2O(醋酸铅)15mg/L,pH4.5~4.7,温度(85±1)℃,时间2 h。先通过正交试验对表面活性剂类型、用量和石墨烯用量进行优化,再通过复配试验得到较佳组合的复合表面活性剂,最后利用扫描电镜、X射线衍射仪分析了镍-磷-石墨烯复合镀层的表面形貌和微观结构。结果表明,将烷基酚聚氧乙烯醚(APEO)与十二烷基苯磺酸钠(SDBS)以1:1的质量比复配时,复合镀层的厚度和显微硬度最高,分别为15.2μm和576.4 HV。镍-磷-石墨烯复合镀层是非晶结构,石墨烯均匀地嵌埋在基质镀层中。  相似文献   

16.
采用喷射电沉积法在45钢棒表面制备Co-P合金镀层。镀液组成和工艺参数为:CoSO_4·7H_2O 200 g/L,H_3PO_4 50g/L,H_3BO_3 30 g/L,NaCl 25 g/L,pH=1.0,温度50℃,喷头移动速率1.2 mm/s,电流密度10~70A/dm~2。研究了电流密度对Co-P合金镀层的表面形貌、相结构、显微硬度和耐磨性的影响。结果表明:在10~70A/dm~2电流密度范围内,随电流密度从10A/dm~2增大到70 A/dm~2,Co-P合金镀层的厚度变化不大,晶粒细化,显微硬度升高,耐磨性改善,但电流密度高于40A/dm~2时所得镀层的表面平整度下降。  相似文献   

17.
采用NiSO_4·6H_2O与CoSO_4·7H_2O的质量浓度比不同的镀液在黄铜上喷射电沉积Co–Ni合金,研究了电流密度对Co–Ni合金镀层表面形貌、元素组成、晶体结构、显微硬度和耐磨性的影响。结果表明:随着电流密度的增大,Co–Ni合金镀层的晶粒先细化后粗化,Co含量减小。镀层在Co含量高于85%时基本为密排六方(hcp)相,低于85%时为hcp和面心立方(fcc)两相共存。镀层的晶粒越细,则显微硬度越高,耐磨性越好。在CoSO_4·7H_2O和NiSO_4·7H_2O的质量浓度分别为200 g/L和100 g/L的条件下,镀层受电流密度的影响较小,Co含量稳定在96%左右,表面均匀致密,显微硬度高达425 HV,耐磨性较好。  相似文献   

18.
采用电沉积法在铁片上制备Ni–W–微米SiC复合镀层。研究了微米SiC颗粒用量、pH、电流密度等工艺参数对复合镀层中SiC颗粒含量的影响,得到最优工艺为:NiSO_4·6H_2O 20 g/L,Na_2WO_4·2H_2O 50 g/L,Na_3C_6H_8O_7·2H_2O 50 g/L,微米SiC颗粒20g/L,pH7.0,电流密度2.5 A/dm~2。采用X射线衍射仪、扫描电子显微镜、能谱仪和浸泡腐蚀试验表征了Ni–W–微米SiC复合镀层的晶相结构、表面形貌、元素组成和耐蚀性。采用红外光谱法初步探讨了SiC微米颗粒的沉积机理。结果表明,SiC微米颗粒在复合镀层中的质量分数可高达42.5%,SiC微米颗粒的存在能消除Ni–W合金镀层的裂纹,从而提高镀层对基体的保护能力。镀液中的阴离子可能对SiC微米颗粒的沉积过程有一定的影响。  相似文献   

19.
研究了丁二酸对化学镀Ni-P纳米TiO_2复合镀层性能的影响。镀液组成及工艺条件为:NaH_2PO_2·H_2O 32g/L,NiSO_4·6H_2O 26g/L,一水合柠檬酸20g/L,CH_3COONa·3H_2O 15g/L,十二烷基苯磺酸钠40 mg/L,纳米TiO_2微粒0.6~1.5g/L,丁二酸4~24 mg/L,温度(88±1)°C,pH值4.8±0.2,时间1h。加入适量的丁二酸,能够提高镀液的稳定性,加快沉积速率,提高镀层中磷的质量分数、显微硬度及耐蚀性。丁二酸的最佳质量浓度为2g/L。  相似文献   

20.
以纯铜棒为基体,采用复合电镀技术制备了Ni–Al2O3复合电极。镀液组成和工艺条件为:Ni SO4·6H2O 250~300 g/L,Ni Cl2·6H2O 40~50 g/L,Al2O3 10~60 g/L,H3BO3 35~40 g/L,十二烷基硫酸钠0.05 g/L,p H 3~4,阴极平均电流密度2~6 A/dm2,温度30~70°C,时间3 h。分析了镀液中Al2O3颗粒添加量、温度和阴极电流密度对Ni–Al2O3复合镀层Al2O3含量、均匀性和显微硬度的影响。分别以Ni–Al2O3复合电极和纯铜电极为工具,对W7Mo4Cr4V2Co5高速钢进行电火花加工(EDM)试验。在Al2O3添加量30 g/L、阴极电流密度3 A/dm2、温度50°C的条件下,所得镀层厚度为100μm,Al2O3颗粒体积分数为14.48%,显微硬度为434.72 HV,综合性能最佳。Ni–Al2O3复合电极在EDM试验中的相对质量损耗约为纯铜电极的1/5,抗电蚀性更优。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号