首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
《Fuel》2006,85(5-6):593-600
The emulsification method is a potential technique for reducing pollutant emissions from combustion equipment primarily due to occurrence of micro-explosion to enhance burning. In this study, an ultrasonic emulsification method was applied to prepare two-phase water-in-oil (W/O) and three-phase oil-in-water-in-oil (O/W/O) emulsions. The engine performance and the pollutant emission characteristics of a diesel engine were measured and analyzed. A rather violent ultrasonic wave may result in the phenomena of cavitations and hot spots, which in turn promotes fast chemical and physical reactions. Various kinds of liquid, which are immiscible with each other, may thus become highly mixed so that an emulsion is formed. This study first used an ultrasonic oscillating bath to produce ultrasonic waves by which two- and three-phase emulsions were prepared. The experimental results show that the emulsions prepared by the ultrasonic vibrating method have much finer and better-distributed droplets. The use of these emulsions as an engine fuel produced lower NO emission, lower soot concentration and lower black smoke opacity, while creating a larger brake specific fuel consumption (bsfc) and a larger CO emission compared with that of an engine using neat diesel fuel. However, the variations in the concentrations of CO2 and O2 emissions between the emulsions and neat diesel fuel were not significant. In a comparison with the characteristics of the two-phase W/O emulsion, the three-phase O/W/O emulsion was found to have a larger CO emission, larger soot particles and larger bsfc while producing a lower brake thermal efficiency and a lower black smoke opacity.  相似文献   

2.
Diesel engines exhausting gaseous emission and particulate matter have long been regarded as one of the major air pollution sources, particularly in metropolitan areas, and have been a source of serious public concern for a long time. The emulsification method is one of the potentially effective techniques to reduce emission pollution from diesel engines. Ultrasonic waves are a kind of sound waves with a frequency larger than 20 kHz, and they cannot be detected by the human ear. The phenomena of cavitation and hot spots produced by the rather violent action of ultrasonic waves can cause rapid chemical and physical reactions. This allows immiscible liquids to be well stirred with each other by means of ultrasonics. An ultrasonically vibrating machine that provides ultrasonic waves of a 40-kHz frequency was employed to prepare two- and three- phase emulsions in this experimental study. The fuel properties and the emulsion stability of the diesel emulsions were measured and analyzed. Experimental results show that the ultrasonic emulsification method successfully prepared two- and three-phase emulsions with tiny dispersed-phase droplets that are very evenly distributed in the outer oil or water phase. The ultrasonic processing time, quantity and HLB of the emulsifying agent were noted to have determinative influences on the formation of the emulsion and the fuel properties. A longer ultrasonic processing time caused less un-emulsified diesel fuel, smaller sizes and a more even distribution of dispersed-phase droplets in the outer oil phase and larger emulsion viscosity. However, a longer ultrasonic processing time also produced a larger temperature rise in the emulsion, leading to the deterioration of the emulsion stability. The O/W emulsion was found to have the lowest percentage of separation and thus the highest emulsion stability among the O/W/O, O/W and W/O emulsions. In addition, in comparison with the W/O emulsion, the O/W emulsion was shown to have a smaller size and a more even distribution of the dispersed-phase droplets. It also had a lesser rise in emulsion temperature when the ultrasonic processing time increased. The control of the ultrasonic processing time is important to successfully prepare the three-phase O/W/O emulsion. Too long a vibration time at the second-stage of emulsification is shown to cause the dispersed-phase pellets to contract and congregate with the inner-phase droplets. The three-phase emulsion structure then finally disappears and transforms into a two-phase emulsion. The addition of 2% by volume of the emulsifier mixture of Span80 and Tween80 with a HLB = 8, as suggested by this study for the preparation of stable two- and three-phase emulsions, were observed to have the lowest percentage of separation of the W/O and O/W/O emulsions. For preparing a stable O/W emulsion, the proportion of the emulsifier could be as low as 1.5% by volume. The percentage of separation of the O/W/O emulsion was lower and less influenced by the change in emulsion temperature than was the W/O emulsion with the same water content. However, the O/W/O emulsion was found to have a larger viscosity and a more significant variation of its viscosity, depending on the ultrasonic processing time, than the W/O emulsion.  相似文献   

3.
Cherng-Yuan Lin  Kuo-Hua Wang 《Fuel》2003,82(11):1367-1375
Diesel engines are employed as the major propulsion power for in-land and marine transportation vehicles primarily because of their rigid structure, low breakdown rate, high thermal efficiency and high fuel economy. It is expected that diesel engines will be widely used in the foreseeable future. However, the pollutants emitted from diesel engines (in particular nitrogen oxides and particulate matter) are detrimental to the health of living beings and ecological environment have been recognized as the major air pollution source in metropolitan areas and have thus attracted much research interest. Although diesel oil emulsion has been considered as a possible approach to reduce diesel engine pollutants, previous relevant applications were restricted to two-phase emulsions. Three-phase emulsions such as oil-in-water-in-oil briefly denoted as O/W/O emulsions and water-in-oil-in-water, denoted as W/O/W, have not been used as an alternative fuel for any combustion equipment. Studies on the properties of three-phase emulsion as fuel have not been found in the literatures. The emulsification properties of an O/W/O three-phase diesel fuel emulsion were investigated in this experimental study. The results show that the mean drop size of the O/W/O emulsion was reduced significantly with increasing homogenizing machine revolution speed. An increase in inner phase proportion of the O/W/O emulsion resulted in increasing the emulsion viscosity. The viscosity of O/W/O emulsion is greater than that for water-in-oil (denoted briefly as W/O emulsion) for the same water content. More stable emulsion turbidity appeared for three-phase O/W/O diesel emulsions added with emulsifier with HLB values ranging from 6 to 8. In addition, three-phase O/W/O emulsions with greater water content will form a larger number of liquid droplets, leading to a faster formation rate and greater emulsion turbidity at the beginning but a faster descending rate of emulsion turbidity afterwards. The potential for using O/W/O emulsions as an alternative fuel for diesel engines was also evaluated.  相似文献   

4.
《Fuel》2007,86(1-2):210-217
Biodiesel has attractive fuel properties such as excellent biodegradability and lubricity, almost no emissions of sulfur oxides, PAH and n-PAH, reduced CO2, PM and CO emission, superior combustion efficiency, etc. However, burning of biodiesel generally produces higher levels of NOx emissions, primarily due to its high oxygen content. In this study, the emulsification technology has been considered to reduce the NOx emission level of fossil fuel. Biodiesel, produced by means of transesterification reaction accompanied with a peroxidation process, was emulsified to form two-phase W/O and three-phase O/W/O emulsions. The effects of the emulsification variables such as hydrophilic lipophilic balance (HLB), and water content on the fuel properties and emulsion characteristics of W/O and O/W/O emulsions were investigated in this study. The experimental results show that the surfactant mixture with HLB = 13 produced the highest emulsification stability while HLB = 6 produced the lowest emulsification stability and the most significant extent of water–oil separation among the various HLB values for O/W/O biodiesel emulsion. The kinematic viscosity, specific gravity and carbon residual of the biodiesel emulsions were larger than those of the neat biodiesel. In addition, the W/O biodiesel emulsion was found to have a smaller mean droplet size, lower volumetric fraction of the dispersed phase than the O/W/O biodiesel emulsion, and the highest heating value among the test fuels, if the water content is deducted from the calculation of the heating value.  相似文献   

5.
In this work, water-in-oil emulsions (W/O) and ethanol-in-oil emulsions (E/O) emulsions were prepared successfully by membrane emulsification. The emulsifiers selected were PGPR and MO-750 for the W/O and E/O emulsions, respectively. For W/O emulsions prepared with an oil pre-filled membrane, the dispersed flux was lower and the droplet size sharper than that obtained with a water pre-filled membrane. On the contrary, for E/O emulsions prepared with the membrane pre-filled with oil, the dispersed phase (ethanol) rapidly pushed out the oil from the membrane pores. Therefore, the pre-treatment of the membrane had almost no effect on the dispersed phase flux and on the droplet size. The droplet size distribution of the E/O emulsion was close to that obtained with a classical homogenizer. The dispersed phase fluxes were high and no fouling was observed for our experimental conditions (1.6 l emulsion, 10 wt% ethanol). These results confirm that membrane emulsification could be an interesting alternative for the preparation of E/O emulsions for the purpose of biodiesel fuels, considering the scale-up ability of membranes and their potentiality for industrial processes.  相似文献   

6.
Biodiesel is one of the more promising alternative clean fuels to fossil fuel, which can reduce the emissions of fossil fuel burning, and possibly resolve the energy crisis caused by the exhaustion of petroleum resources in the near future. The burning of biodiesel emits much less gaseous emissions and particulate matter primarily because of its dominant combustion efficiency. However, the high oxygen content in biodiesel not only promotes the burning process but also enhances NOx formation when biodiesel is used as fuel. Biodiesel emulsion and the additive of NOx-inhibitor agent are considered to reduce levels of NOx emissions in this experimental study. The biodiesel was produced by transesterification reaction accompanied with peroxidation process. A three-phase biodiesel emulsion of oil-in water drops-in oil (O/W/O) and an O/W/O biodiesel emulsion containing aqueous ammonia were prepared afterwards. The effect of the existence of NOx-inhibitor agent on the fuel properties and the emulsion characteristics of the O/W/O biodiesel emulsions were investigated. The experimental results show that the burning of the O/W/O biodiesel emulsion and the O/W/O biodiesel emulsion containing aqueous ammonia had larger fraction of fuel burnt and thus larger heat release than the neat biodiesel if water content is not considered for the calculation of heating value. The addition of aqueous ammonia within the dispersed phase of the O/W/O biodiesel emulsion appeared to deteriorate the emulsification characteristics. A smaller quantity of emulsion and greater kinematic viscosity were formed while a larger carbon residue and actual reaction-heat release also appeared for this O/W/O biodiesel emulsion. Aqueous ammonia in the O/W/O biodiesel emulsion produces a higher pH value as well. In addition, the number as well as the volumetric fraction of the dispersed water droplets is reduced for the O/W/O biodiesel emulsion that contains aqueous ammonia.  相似文献   

7.
Biodiesel, which is produced from vegetable oils, animal fats or used cooking oils, can be used as an alternative fuel for diesel engines. The high oxygen content of biodiesel not only enhances its burning efficiency, but also generally promotes the formation of more nitrogen oxides (NOx) during the burning process. Fuel emulsification and the use of NOx inhibitor agents in fuel are considered to be effective in reducing NOx emissions. In the study reported herein, soybean oil was used as raw oil to produce biodiesel by transesterification reaction accompanied by peroxidation to further improve the fuel properties of the biodiesel, which was water washed and distilled to remove un-reacted methanol, water, and other impurities. The biodiesel product was then emulsified with distilled water and emulsifying surfactant by a high-speed mechanical homogenizer to produce a three-phase oil-droplets-in-water-droplets-in-oil (i.e. O/W/O) biodiesel emulsion and an O/W/O emulsion that contained aqueous ammonia, which is a NOx inhibitor agent. A four-stroke diesel engine, in combination with an eddy-current dynamometer, was used to investigate the engine performance and emission characteristics of the biodiesel, the O/W/O biodiesel emulsion, the O/W/O biodiesel emulsion that contained aqueous ammonia, and ASTM No. 2D diesel. The experimental results show that the O/W/O emulsion has the lowest carbon dioxide (CO2) emissions, exhaust gas temperature, and heating value, and the largest brake specific fuel consumption, fuel consumption rate, and kinematic viscosity of the four tested fuels. The increase of engine speed causes the increase of equivalence ratio, exhaust gas temperature, CO2 emissions, fuel consumption rate, and brake specific fuel consumption, but a decrease of NOx emissions. Moreover, the existence of aqueous ammonia in the O/W/O biodiesel emulsion curtails NOx formation, thus resulting in the lowest NOx emissions among the four tested fuels in burning the O/W/O biodiesel emulsion that contained aqueous ammonia.  相似文献   

8.
The influence of the emulsification process on the microstructure and physical stability of model water‐in‐oil‐in‐water (W/O/W) emulsions formulated with a green solvent and a mixture of amphiphilic copolymers as emulsifiers was investigated. Emulsions were prepared by applying a homogenization step with a rotor‐stator device followed by high‐pressure homogenization. Viscous flow tests, transmitted light optical microscopy, globule size distribution (GSD), and multiple light scattering (MLS) measurements were carried out. The GSDs obtained were the result of a recoalescence due to overprocessing and the coalescence of inner droplets with the outer water phase. MLS detected a main destabilization mechanism by creaming. The passing of the emulsion through a high‐pressure homogenizer (HPH) significantly delayed the creaming process.  相似文献   

9.
高脂食品严重危害着人类健康,这引起人们对低脂食品的的不断追求,因此脂肪替代品的开发越来越受到人们重视。本试验以玉米油和生物高聚物为主要原料通过两步乳化法制备W1/O/W2多重乳状液作为脂肪替代品(FS),以离心稳定性为衡量标准,用显微镜直接观察,探讨了初复乳乳化工艺、各相相对体积比对玉米油W1/O/W2型多重乳状液体系稳定性的影响。结果表明:1.影响玉米油多重乳状液稳定性的主要因素有:复乳的乳化工艺,内水相与油相体积之比等。2.两步乳化工艺中第二步乳化工艺对复乳稳定性影响较大,其规律是随着乳化强度的提高,粒径减小,稳定性呈上升趋势,适宜的乳化条件为7200 r.min.1,13 min,而第一步乳化工艺对复乳稳定性几乎没有影响。3.内水相与油相、初乳与外水相均是影响复乳稳定性的主要因素,前者主要是依靠改变初乳黏度来影响复乳稳定性,后者主要是乳滴间范德华力与电排斥力共同作用的结果,适宜的体积比分别为1:4和1:1。  相似文献   

10.
《分离科学与技术》2012,47(1):151-168
Abstract

An experimental study of mechanical entrainment in W/O/W emulsions is conducted. W/O/W emulsions are stirred for various stirring times under the conditions that mechanical entrainment solely occurs, and changes in volume of the W/O emulsions and size distribution of the internal water droplets are measured. The rate of change in number of the water droplets entrained is found to be proportional to the volume fraction of W/O emulsions. Based on this result, a new model for mechanical entrainment is developed. The calculated change in W/O emulsion volume with time agrees with the observed ones except in the region near phase inversion. Then, phase inversion is discussed.  相似文献   

11.
A water‐in‐oil‐in‐water (W/O/W) multiple emulsion containing a hydrophilic substance, 1,3,6,8‐pyrenetetrasulfonic acid tetrasodium salt (PTSA), and a wall material in its inner and outer aqueous phases, respectively, was prepared by a two‐step emulsification using a rotor/stator homogenizer, and was further homogenized with a high‐pressure homogenizer. Maltodextrin or gum arabic were used as wall materials, and olive oil was used as the oily phase. The high encapsulation efficiency for PTSA (>0.9) was realized. The emulsion was spray‐dried to produce microcapsules of W/O/W type. The efficiencies of the microcapsules prepared with maltodextrin and gum arabic were 0.82 and 0.67, respectively. Stability of the microcapsules was examined at 37 °C and 12%, 33% and 75% relative humidity. Microcapsules prepared with maltodextrin were more stable than those prepared with gum arabic.  相似文献   

12.
We developed a novel method for preparing lipid vesicles with high entrapment efficiency and controlled size using water‐in‐oil‐in‐water (W/O/W) multiple emulsions as vesicle templates. Preparation consists of three steps. First, a water‐in‐oil (W/O) emulsion containing to‐be‐entrapped hydrophilic molecules in the water phase and vesicle‐forming lipids in the oil phase was formulated by sonication. Second, this W/O emulsion was introduced into a microchannel emulsification device to prepare a W/O/W multiple emulsion. In this step, sodium caseinate was used as the external emulsifier. Finally, organic solvent in the oil phase was removed by simple evaporation under ambient conditions to afford lipid vesicles. The diameter of the prepared vesicles reflected the water droplet size of the primary W/O emulsions, indicating that vesicle size could be controlled by the primary W/O emulsification process. Furthermore, high entrapment yields for hydrophilic molecules (exceeding 80 % for calcein) were obtained. The resulting vesicles had a multilamellar vesicular structure, as confirmed by transmission electron microscopy.  相似文献   

13.
The formation of a complex, composed of lauroamphoglycinate (LG), oleic acid (OA) and water, was investigated, and this system was applied to emulsification. The complex was formed in the water-rich area (more than 90% in this system) at a molar ratio of OA to LG from 1 to 3, where two-phase systems of water and the complex existed. The interaction between LG and OA, both in the aqueous solution and at the interface of liquid paraffin dissolving the OA and LG solution, was studied by pH measurements and interfacial tension measurements, respectively. The results implied that LG and OA were linked stoichiometrically, both in aqueous solution and at the interface, and formed complexes. X-ray diffraction patterns and the strong hydrophobicity showed that the equimolar complex composed of LG, OA, and water was a liquid crystal with a reversed hexagonal structure. The reversed hexagonal liquid crystal was capable of solubilizing a certain amount of liquid paraffin in its alkyl group parts while maintaining its hexagonal structure. These results suggest the possibility to prepare a W/O-type emulsion by using the liquid crystal formed by LG, OA, partial liquid paraffin, and water as the continuous phase. The authors could obtain a stable W/O emulsion without coalescence of the water droplets that contained a substantial amount of water (approximately 90%). Furthermore, various types of emulsions, O/W, W/O, W/O/W, could be prepared by changing the ratio of LG and OA.  相似文献   

14.
Water-in-soybean oil-in-water (W/O/W) emulsions with an internal water phase content of 10–30% (vol/vol) were prepared by a two-step emulsification method using microfluidization and straight-through microchannel (MC) emulsification. A straight-through MC is a silicon array of micrometer-sized through-holes running through the plate. Microfluidization produced water-in-oil (W/O) emulsions with submicron water droplets of 0.15–0.26 μm in average diameter (d av,w/o) and 42–53% in CV (CVw/o) using tetraglycerin monolaurate condensed ricinoleic acid esters (TGCR) and polyglycerin polycondensed ricinoleic acid esters (PGPR) as surfactants dissolved in the oil phase. The d av,w/o and viscosity of the W/O emulsions increased with an increase in internal water phase content. Straight-through MC emulsification was performed using the W/O emulsions as the to-be-dispersed phase and polyoxyethylene (20) sorbitan monooleate (Tween® 80) as a surfactant dissolved in the external water phase. Monodisperse W/O/W emulsions with d av,w/o/w of 39.0–41.0 μm and CVw/o/w below 5% were successfully formed from a straight-through MC with an oblong section (42.8×13.3 μm), using the TGCR-containing systems. The d av,w/o/w of the monodisperse W/O/W emulsions decreased as the internal water phase content increased because of the increase in viscosity of the to-be-dispersed phase. Little leakage of the internal water droplets and no droplet coalescence or droplet break-down were observed during straight-through MC emulsification.  相似文献   

15.
Required hydrophile-lipophile balance (HLB) values were examined in terms of the nature of kerosene-water, both oil-in-water (O/W) and water-in-oil (W/O), emulsions formed using Span 80/Tween 80 surfactant blends. Both the nature of the emulsification method and the oil/water ratio were critical in determining the resulting emulsion type. Both high- and low-shear conditions were investigated. Under high shear, low internal phase emulsions formed using the surfactant mixtures that corresponded to the required HLB values for emulsification involving kerosene (6 for W/O and 14 for O/W). However, at low shear, high internal phase (concentrated) emulsions resulted. Furthermore, depending on the oil/water ratio, some of the high internal phase emulsions were opposite to the type expected, given the HLB of the surfactant blend used. From these results, it appears that the emulsification technique (applied shear and oil/water ratio) used can be of greater importance in determining the final emulsion type than the HLB values of the surfactants themselves.  相似文献   

16.
This study presents a method of preparing simple and multiple emulsions formed in a liquid-liquid contactor with Couette-Taylor flow (CTF). A Couette-Taylor flow contactor represents a mini-channel device, and due to its small dimension can be connected to a diesel engine for just-prepared emulsion injection. Stable simple W/O and multiple O/W/O emulsions have been prepared, both with quite narrow drop size distribution. The mean drop size of the inner phase of multiple emulsions is in range of 2-10 μm depending on the operating conditions. Simple and multiple emulsions will be considered as an alternative diesel fuel for improving engine performance and emissions characteristics.  相似文献   

17.
制备单分散含单体O/W乳液的SPG膜乳化过程   总被引:2,自引:0,他引:2       下载免费PDF全文
谢锐  褚良银  陈文梅 《化工学报》2006,57(4):874-879
采用Shirasu多孔玻璃(SPG)膜乳化法制备了单分散含对苯二甲酰氯(TDC)单体的O/W乳液,系统地研究了SPG膜乳化过程的影响因素.实验结果表明,采用SPG膜乳化法制备单分散O/W乳液时,选择阴离子表面活性剂比考虑亲水亲油平衡(HLB)匹配更重要;增大分散相或连续相的黏度,能够改善乳液的单分散性和稳定性;随着单体浓度增加,乳液的单分散性变差,液滴的平均粒径逐渐变小.当SPG膜孔径大于1.0 μm左右时,可得到单分散的含TDC单体乳液;而当孔径小于1.0 μm左右时,水分子更容易扩散并溶解到油水界面甚至油相内部与TDC生成对苯二甲酸(TPA),TPA积累到一定程度在油水界面上析出将膜孔堵塞,从而无法制得单分散乳液.随着乳化时间增长,乳液的平均直径逐渐变小、单分散性逐渐变差.  相似文献   

18.
Multiple liquid emulsions of the water in oil in water (W1/O/W2) type are used in a variety of consumer or technical applications, for instance in the encapsulation of certain active ingredients. The encapsulation process and release mechanisms of the inner phase of the carrier drops are important in order to properly process and formulate such liquid-liquid systems. In this work the stability and breakage of multiple W1/O/W2 emulsions under mechanical shear stress are investigated for emulsions with different surfactants and surfactant concentrations of the internal emulsion. Stressing the emulsions in a mechanical stirring process is compared to the membrane emulsification process. The membrane emulsification process results in higher encapsulation efficiencies than the stirring process. The emulsion droplets were subjected to shear stress below and above the critical capillary number for drop breakup. The results show that stable inner emulsions with sufficient surfactant concentrations increase the overall encapsulation efficiency for multiple emulsions subjected to shear stress, although the effect is not prominent. The depletion of the carrier oil droplets could be achieved for Ca numbers below the critical limit, reducing the encapsulation efficiency below 10 %. This shows that even a low shear stress can result in content release from the internal droplet phase. The experimental emulsion release study is supported by a numerical simulation of drop deformation and break-up under shear stress.  相似文献   

19.
Low-speed rotation of disc in an internal circulation of a novel de-emulsification with rotation-dise horizental contactor (RHC-D) realized de-emulsification for O/W emulsions due to repeated coalescence in oil-wet narrow channels at a low rotation speed. For three emulsions included ethanol/water/2-ethyl-1-hexanol, ethanol/water/2-ethyl-1-hexanol/SDS (Sodium Dodecyl Sulfonate) and 2-ethyl-1-hexanol/water/SDS emulsion, deemulsification ratios of oil phase could reach 1, 1 and 0.67 respectively at 170 r·min-1, and de-emulsification ratios increased obviously after agitating 10 min. De-emulsification experiment in the seam indicated that oil droplet sizes in O/W emulsion became larger after de-emulsification. The main de-emulsification mechanism in RHCD was the coalescence of oil droplets in oil-wet narrow channels. With increase of the rotation speed, oil droplets dispersed better in the aqueous phase. However, de-emulsification effect enhanced due to the increase of the coalescence rate at a bit higher rotation speed. In addition, internal circulation made those O/W emulsions to be broken repeatedly, consequently de-emulsification ratio increased. Repeated de-emulsification through internal circulation might make continuous extraction of ethanol come true at a low rotation speed.  相似文献   

20.
The effect of a commercial flocculant (Alpacon® WS009) and two coagulant salts (CaCl2 and AlCl3) on the stability of metalworking oil‐in‐water (O/W) emulsions was examined. Two O/W emulsions were tested: a fresh emulsion, prepared in the laboratory from a commercial concentrate, and a waste metalworking emulsion, provided by a local waste management company, with initial oil concentrations of 32900 and 16900 mg/L, respectively. The emulsion stability was studied at different demulsifier concentrations, temperatures and pH through centrifugation tests, zeta potential and multiple light scattering measurements. Emulsion breakdown is explained by electrostatic repulsion of oil droplets and steric interactions. The former was observed for the laboratory emulsion, while the latter was observed for the waste emulsion. Aluminum chloride was the only effective agent for demulsifying both emulsions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号