首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.
Although Cf/ZrB2–SiC composites prepared via direct ink writing combined with low-temperature hot-pressing were shown to exhibit high relative density, high preparation efficiency, and excellent flexural strength and fracture toughness in our previous work, their oxidation and ablation resistance at high and ultrahigh temperatures had not been investigated. In this work, the oxidation and ablation resistance of Cf/ZrB2–SiC composites were evaluated via static oxidation at high temperature (1500°C) and oxyacetylene ablation at ultrahigh temperatures (2080 and 2270°C), respectively. The thickness of the oxide layer of the Cf/ZrB2–SiC composites is <40 μm after oxidizing at 1500°C for 1 h. The Cf/ZrB2–SiC composites exhibit non-ablative properties after oxyacetylene ablation at 2080 and 2270°C for >600 s, with mass ablation rates of 3.77 × 10−3 and 5.53 × 10−3 mg/(cm2 s), and linear ablation rates of −4.5 × 10−4 and −5.8 × 10−4 mm/s, respectively. Upon an increase in the ablation temperature from 2080 to 2270°C, the thickness of the total oxide layer increases from 360 to 570 μm, and the carbon fibers remain intact in the unaffected region. Moreover, the oxidation and ablation process of Cf/ZrB2–SiC at various temperatures was analyzed and discussed.  相似文献   

2.
Cf/SiC-ZrB2-TaxCy composite was synthesized by reactive hot pressing (RHP) of Cf cloth, polycarbosilane (PCS), ZrB2, and Ta powders at 4 MPa and 1200 °C. PIP cycle influenced sintering process by increasing density of the composite from 2.34 to 2.82 g/cc. Residual carbon produced during the PIP cycles at 1200 °C was utilized to yield TaxCy by the addition of Ta. SEM images illustrate that by increasing the number of PIP cycles, SiC derived from the PCS cover the Cf fibre, micropores, and cracks. PIP cycles and TaxCy phase improved flexural strength of the composite from 20 to 114 MPa. Mass and linear ablation resistance studies at 1600–2000 °C exhibited that oxide formation at the outer surface caused a barrier; further, no oxidation underneath the composite was observed. SEM images display that at 2000 °C, SiO2 and TaxOy were molten and sealed the pores. Hence, ablation resistance was enhanced by blocking the penetration in high-temperature flame.  相似文献   

3.
In space propulsion applications, the development of new ceramic matrix composites with improved resistance to oxidation and ablation at high temperature is needed and ultra-high temperature ceramics-based ones appear the most suitable. Combination of both powder impregnation (ZrB2, C) and liquid silicon infiltration enabled manufacturing of UHTC based matrices in Cf/C preforms with less than 10 vol% open porosity and various proportions and homogeneous distribution of C, ZrB2, SiC and Si. Oxidation behaviour was evaluated on composite structures using an oxyacetylene torch at temperatures higher than 2000 °C. Chemical analyses and microstructural observations before and after oxidation testing evidenced the protection ability of ZrB2-SiC-Si matrices thanks to the formation of multi-oxide scales which resisted even tested durations of 6 min and pointed the unharmful presence of residual 12 vol% silicon on the composite for use at high temperature under high gas flows.  相似文献   

4.
《Ceramics International》2020,46(1):156-164
Spark plasma sintering (SPS) route was employed for preparation of quadruplet ZrB2–SiC–ZrC–Cf ultrahigh temperature ceramic matrix composites (UHTCMC). Zirconium diboride and silicon carbide powders with a constant ZrB2:SiC volume ratio of 4:1 were selected as the baseline. Mixtures of ZrB2–SiC were co-reinforced with zirconium carbide (ZrC: 0–10 vol%) and carbon fiber (Cf: 0–5 vol%), taking into account a constant ratio of 2:1 for ZrC:Cf components. The sintered composite samples, processed at 1800 °C for 5 min and 30 MPa punch press under vacuumed atmosphere, were characterized by densitometry, field emission scanning electron microscopy, energy dispersive spectroscopy, X-ray diffractometry as well as mechanical tests such as hardness and flexural strength measurements. The results verified that the composite co-reinforced with 5 vol% ZrC and 2.5 vol% Cf had the optimal characteristics, i.e., it reached a relative density of 99.6%, a hardness of 18 GPa and a flexural strength of 565 MPa.  相似文献   

5.
This study investigated the effect of short carbon fiber (Cf) on the oxidation behavior of ZrB2–SiC composites with fiber volume fractions in the range of 0–20%. Precisely, highly dense composite compacts were manufactured by hot-press process at 2000 °C and 30 MPa for 60min. The addition of Cf increased the relative density of sintered composite The oxidation treatment at 1600 °C in air tube furnace for 0.5 h revealed that oxidation rate of ZrB2–SiC-Cf composites decreased from 292.4 μm/h to 77.6 μm/h (almost 73.5% decline), when the content of Cf changed from 0 to 20%. Moreover, Cf played important roles in blocking and deflecting oxygen diffusion during the oxidation process, which provided a local reduction environment of oxidation products.  相似文献   

6.
To improve the corrosion resistance of the carbon fiber reinforced magnesium matrix composites (Cf/Mg composites), ZrO2 and ZrB2-SiC/ZrO2 composite coatings were prepared by supersonic atmospheric plasma spraying (SAPS) on Cf/Mg composites. The microstructure and phase composition of the coatings before and after the corrosion test were investigated. Open circuit potential and potentiodynamic polarization tests were measured at room temperature. Results revealed that the corrosion current density (icorr) of the ZrO2 coated Cf/Mg composites decreased by one order while the ZrB2-SiC/ZrO2 coated Cf/Mg composites reduced by two orders. Compared with Cf/Mg composites, the corrosion potential (Ecorr) of the ZrO2 and ZrB2-SiC/ZrO2 coated Cf/Mg composites increased by 220.5?mV and 1021.8?mV respectively, indicating that the ZrB2-SiC/ZrO2 composite coatings greatly improve the corrosion resistance of Cf/Mg composites. The uniform distribution of the SiC particles with small grain size in ZrB2 is responsible for the densification of the coating. The ZrB2-SiC/ZrO2 composite coatings provide a barrier for the substrate to impede the entry of Cl- in the corrosion solution, thus exhibiting a better corrosion resistance than the ZrO2 coating.  相似文献   

7.
A novel method has been developed to fabricate carbon fiber reinforced SiC (Cf/SiC) composites by combining 3D printing and liquid silicon infiltration process. Green parts are firstly fabricated through 3D printing from a starting phenolic resin coated carbon fiber composite powder; then the green parts are subjected to vacuum resin infiltration and pyrolysis successively to generate carbon fiber/carbon (Cf/C) preforms; finally, the Cf/C preforms are infiltrated with liquid silicon to obtain Cf/SiC composites. The 3D printing processing parameters show significant effects on the physical properties of the green parts and also the resultant Cf/C preforms, consequently greatly affecting the microstructures and mechanical performances of the final Cf/SiC composites. The overall linear shrinkage of the Cf/SiC composites is less than 3%, and the maximum density, flexural strength and fracture toughness are 2.83?±?0.03?g/cm3, 249?±?17.0?MPa and 3.48?±?0.24?MPa m1/2, respectively. It demonstrates the capability of making near net-shape Cf/SiC composite parts with complex structures.  相似文献   

8.
Herein, biomimetic Cf/ZrB2-SiC ceramic composites with bouligand structures are fabricated by combining precursor impregnation, coating, helical assembly and hot-pressing sintering. First, Cf/ZrB2-SiC ceramic films are achieved through a precursor impregnation method using polycarbosilane (PCS). Second, the PCS-Cf/ZrB2-SiC ceramic films are coated with ZrB2 and SiC ceramic layers. Finally, hot-pressing sintering is employed to densify helical assembly Cf/ceramic films with a fixed angle of 30°. The microstructures and carbon fiber content on the mechanical properties of biomimetic Cf/ZrB2-SiC ceramic composites are analyzed in detail. The results show that the coated ceramic layer on PCS-Cf/ZrB2-SiC films can heal the cracks formed by pyrolysis of PCS, and the mechanical properties are obviously improved. Meanwhile, the mechanical properties could be tuned by the contents of the carbon fiber. The toughening mechanisms of Cf/ZrB2-SiC ceramic composites with bouligand structures are mainly zigzag cracks, crack deflection, multiple cracks, carbon fiber pulling out and bridging.  相似文献   

9.
《Ceramics International》2015,41(7):8868-8877
The ablation properties and mechanisms (under oxyacetylene combustion) together with thermal shock behavior of SiCf/Cf/SiBCN ceramic composites were investigated. The solid ablation products are primarily amorphous SiO2 and cristobalite. The primary ablation mechanisms include fiber and ceramic matrix oxidation, evaporation of B2O3 (l) and SiO2 (l), and mechanical exfoliation. SiCf/Cf/SiBCN has a significantly low mass ablation rate and a desirable linear ablation rate. The combination of crack deflection caused by SiC and carbon fibers, fiber pull-out and debonding improves thermal shock resistance and thus leads to the absence of surface macrocracks.  相似文献   

10.
《Ceramics International》2022,48(4):5187-5196
To investigate the silicon/graphite ratio and temperature on preparation and properties of ZrB2–SiC coatings, ZrB2, silicon, and graphite powders were used as pack powders to prepare ZrB2–SiC coatings on SiC coated graphite samples at different temperatures by pack cementation method. The composition, microstructure, thermal shock, and oxidation resistance of these coatings were characterized and assessed. High silicon/graphite ratio (in this case, 2) did not guarantee higher coating density, instead could be harmful to coating formation and led to the lump of pack powders, especially at temperatures of 2100 and 2200 °C. But residual silicon in the coating is beneficial for high density and oxidation protection ability. The SiC/ZrB2–SiC (ZS50-2) coating prepared at 2000 °C showed excellent oxidation protective ability, owing to the residual silicon in the coating and dense coating structure. The weight loss of ZS50-2 after 15 thermal shocks between 1500 °C and room temperature, and oxidation for 19 h at 1500 °C are 6.5% and 2.9%, respectively.  相似文献   

11.
A SiC fiber-reinforced composite containing a SiC-ZrB2 mixed matrix (SiCf/(SiC-ZrB2)) with high density and enhanced mechanical properties was fabricated. ZrB2 at 5 or 40?vol% was added to a (SiC + C) slurry to be infiltrated into the voids of 2D woven Tyranno?-SA grade-3 fabrics by electrophoretic deposition. Subsequent hot pressing at 1300?°C and 10?MPa for 1?h, followed by liquid silicon infiltration (LSI) at 1600?°C for 5?h in an Ar atmosphere resulted in the formation of the reaction-bonded SiC matrix, which revealed a composite density close to 97%. SiCf/(SiC-ZrB2) having open porosities of 0.2–0.6% showed peak strengths of 398 and 320?MPa for 5 and 40?vol% ZrB2 addition, respectively. The large mismatch in the coefficient of thermal expansion and Young's modulus between the SiC and ZrB2 phases was attributed to a reverse trend in the strength of composites. Brittle behavior of the composites in flexure can be explained by the strong bonding between the matrix and fibers formed by the reaction of interphase with molten Si during LSI. Strength retention after oxidation at 1000 and 1400?°C for 2?h was also compared in terms of ZrB2 amount contained in the composites.  相似文献   

12.
《Ceramics International》2020,46(10):16249-16256
In this study, silicon carbide-lanthanum hexaboride (SiC–LaB6) and silicon carbide–lanthanum hexaboride–zirconium boride (SiC–LaB6–ZrB2) ceramics were fabricated by spark plasma sintering at 1900 °C, and their ablation resistance was tested under plasma flames over 2300 °C. The results indicate that the SiC–LaB6–ZrB2 ceramic exhibits better ablation resistance than the SiC–LaB6 ceramic. After ablation under the plasma flame for 60 s, the mass and linear ablation rates of the SiC–LaB6 ceramic were 15.83 μg/s and 1.08 μm/s, respectively, while those of SiC–LaB6–ZrB2 were -8.42 μg/s and -0.27 μm/s. With the addition of ZrB2, SiC–LaB6–ZrB2 ceramic attained a high density and fewer inner oxygen diffusion channels. Moreover, the ZrO2–La2O3–SiO2 oxide scale with good self-healing ability and excellent stability was formed in the ablation centre, which can retard the further oxidation during ablation.  相似文献   

13.
ZrB2-MeC and ZrB2-19 vol% SiC-MexCy where Me=Cr, Mo, W were obtained by pressureless sintering. The capability to promote densification of ZrB2 and ZrB2-SiC matrices is the highest for WC and lowest for Cr3C2. The interaction between the components results in the formation of new phases, such as MeB (MoB, CrB, WB), a solid solution based on ZrC, and a solid solution based on ZrB2. The addition of Cr3C2 decreases the mechanical properties. On the other hand, the addition of Mo2C or WC to ZrB2-19 vol% SiC composite ceramics leads increased mechanical properties. Long-term oxidation of ceramics at 1500 °C for 50 h showed that, in binary ZrB2-MexCy, a protective oxide scale does not form on the surface thus leading to the destruction of the composite. On the contrary, triple composites showed high oxidation resistance, due to the formation of dense oxide scale on the surface, with ZrB2-SiC-Mo2C displaying the best performance.  相似文献   

14.
《Ceramics International》2023,49(2):1700-1709
Carbon fiber-reinforced silicon carbide (C/SiC) composites are important candidates for laser protection materials. In this study, ablation mechanism of C/SiC coated with ZrO2/Mo and ZrB2–SiC/ZrO2/Mo under laser irradiation was studied. ZrB2–SiC multiphase ceramic and ZrO2 ceramic were successfully coated on C/SiC composite by atmospheric plasma spraying technology with Mo as transition layer. Phase evolution and morphology of composite were investigated by X-ray diffraction, scanning electron microscopy, and transmission electron microscopy. Moreover, ablation behavior of the composite was investigated by laser confocal microscopy. Results showed that ablation mechanism of C/SiC composite was controlled by phase transformation, thermal reaction, and thermal diffusion, with solid–liquid transition of ZrB2 and ZrO2 being dominant factor. Endothermic reaction and good thermal diffusivity of coatings were also important factors affecting ablation performance. Reflectivity effect of ZrO2 coating was limited under high-energy laser irradiation. Compared with ZrO2/Mo single-phase-monolayer coating, designed ZrB2–SiC/ZrO2/Mo coating showed better ablation performance, and breakdown time of C/SiC increased from 10 to 40 s. The depletion of liquid phase in molten pool was identified as an important factor responsible for rapid failure of C/SiC. The coating failed when the entire liquid phase was consumed within molten pool, followed by rapid damage of C/SiC substrate. Results of this study can provide theoretical guidance and research ideas for design and application of laser protective materials.  相似文献   

15.
To avoid introduction of milling media during ball‐milling process and ensure uniform distribution of SiC and graphite in ZrB2 matrix, ultrafine ZrB2–SiC–C composite powders were in‐situ synthesized using inorganic–organic hybrid precursors of Zr(OPr)4, Si(OC2H5)4, H3BO3, and excessive C6H14O6 as source of zirconium, silicon, boron, and carbon, respectively. To inhabit grain growth, the ZrB2–SiC–C composite powders were densified by spark plasma sintering (SPS) at 1950°C for 10 min with the heating rate of 100°C/min. The precursor powders were investigated by thermogravimetric analysis–differential scanning calorimetry and Fourier transform infrared spectroscopy. The ceramic powders were analyzed by X‐ray diffraction, X‐ray photoelectron spectroscopy, and scanning electron microscopy. The lamellar substance was found and determined as graphite nanosheet by scanning electron microscopy, Raman spectrum, and X‐ray diffraction. The SiC grains and graphite nanosheets distributed in ZrB2 matrix uniformly and the grain sizes of ZrB2 and SiC were about 5 μm and 2 μm, respectively. The carbon converted into graphite nanosheets under high temperature during the process of SPS. The presence of graphite nanosheets alters the load‐displacement curves in the fracture process of ZrB2–SiC–G composite. A novel way was explored to prepare ZrB2–SiC–G composite by SPS of in‐situ synthesized ZrB2–SiC–C composite powders.  相似文献   

16.
Boron was introduced into Cf/SiC composites as active filler to shorten the processing time of PIP process and improve the oxidation resistance of composites. When heat-treated at 1800 °C in N2 for 1 h, the density of composites with boron (Cf/SiC-BN) increased from 1.71 to 1.78 g/cm3, while that of composites without boron (Cf/SiC) decreased from 1.92 to 1.77 g/cm3. So when boron was used, two cycles of polymer impregnation and pyrolysis (PIP) could be reduced. Meanwhile, the oxidation resistance of composites was greatly improved with the incorporation of boron-bearing species. Most carbon fiber reinforcements in Cf/SiC composite were burnt off when they were oxidized at 800 °C for 10 h. By contrast, only a small amount of carbon fibers in Cf/SiC-BN composite were burnt off. Weight losses for Cf/SiC composite and Cf/SiC-BN composite were about 36 and 16 wt%, respectively.  相似文献   

17.
Dense ZrB2-SiC-Al3BC3 ultra-high temperature ceramic composite was fabricated by hot pressing sintering at 1900°C for 1 hour under a pressure of 20 MPa using Zirconium diboride (ZrB2) as the raw material and a powder mixture of SiC, B4C, Al, and carbon as the sintering additive. Al and B4C underwent in situ reaction with carbon powder to produce Al3BC3, which promoted the densification of ZrB2 ceramic. SiC grains were found to be elongated during sintering. The ZrB2-SiC-Al3BC3 composite exhibited excellent mechanical properties, such as high flexural strength of 589 ± 147 MPa and fracture toughness of 7.81 ± 1.09 MPa m1/2. Oxidation behavior of the ZrB2-SiC-Al3BC3 composite was studied in air at 1500°C for 1 hour. A continuous layer of oxides consisting of a mixture of SiO2, Al2SiO5, and Al2O3 was formed on the surface of the ZrB2-SiC-Al3BC3 composite. This layer of oxides efficiently prevented oxygen from diffusing into the specimens during oxidation, which improved the oxidation resistance of the ZrB2 ceramics.  相似文献   

18.
Layer‐structured interphase, existing between carbon fiber and ultrahigh‐temperature ceramics (UHTCs) matrix, is an indispensable component for carbon fiber reinforced UHTCs matrix composites (Cf/UHTCs). For Cf/UHTCs fabricated by reactive melt infiltration (RMI), the interphase inevitably suffers degradation due to the interaction with the reactive melt. Here, Cf/SiC–ZrC–ZrB2 composite was fabricated by reactive infiltration of ZrSi2 melt into sol‐gel prepared Cf/B4C–C preform. (PyC–SiC)2 interphase was deposited on the fiber to investigate the degradation mechanism under ZrSi2 melt. It was revealed that the degraded interphase exhibited typical features of Zr aggregation and SiC residuals. Moreover, the Zr species diffused across the interphase and formed nanosized ZrC phase inside the fiber. A hybrid mechanisms of chemical reaction and physical melting were proposed to reveal the degradation mechanism according to characterization results and heat conduction calculations. Based on the degradation mechanism, a potential solution to mitigate interphase degradation is also put forward.  相似文献   

19.
The three dimensional needle-punched carbon fiber reinforced ZrB2-SiC composite (Cf/ZrB2-SiC) with highly uniform distribution was fabricated successfully via a novel vibration-assisted slurry impregnation and low-temperature (1450 °C) hot pressing technique using nanosized ZrB2 powders. The carbon fiber/ceramic matrix interfaces were clear without obvious reaction products detected by the high resolution transmission electron microscopy (HR-TEM), indicating the degradation of carbon fiber was effectively inhibited. The Cf/ZrB2-SiC composite exhibited a typical non-brittle fracture feature with a high work of fracture of 1104 J/m2, which was approximately twice that of composite fabricated only by slurry impregnation and hot pressing. The enhancement in work of fracture was attributed to multiple toughening mechanisms of continuous carbon fibers such as extensive fiber bridging and pull-out accompanied by obvious crack deflection and branching. This work provides a valuable potential of preparing continuous carbon fiber reinforced ceramic composites with uniform component distribution and enhanced mechanical properties.  相似文献   

20.
《Ceramics International》2017,43(17):15047-15052
The combined effects of SiC particles and chopped carbon fibers (Cf) as well as sintering conditions on the microstructure and mechanical properties of spark plasma sintered ZrB2-based composites were investigated by Taguchi methodology. Analysis of variance was used to optimize the spark plasma sintering variables (temperature, time and pressure) and the composition (SiC/Cf ratio) in order to enhance the hardness of ZrB2–SiC–Cf composites. The sintering temperature was found as the most effective variable, with a significance of 83%, on the hardness. The hardest ZrB2-based ceramic was achievable by adding 20 vol% SiC and 10 vol% Cf after spark plasma sintering at 1850 °C for 6 min under 30 MPa. Fracture toughness improvement were related to the simultaneous presence of SiC and Cf phases as well as the in-situ formation of nano-sized interfacial ZrC particles. Crack deflection, crack branching and crack bridging were detected as the toughening mechanisms. A Vickers hardness of 14.8 GPa and an indentation fracture toughness of 6.8 MPa m1/2 were measured for the sample fabricated at optimal processing conditions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号