首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
采用共沉淀法合成了铝镁铁三元类水滑石,考察了该类水滑石对水溶液中Cr(Ⅵ)的吸附性能.结果表明:在温度为20℃,初始pH值为7的条件下,吸附剂对Cr(Ⅵ)的吸附平衡时间约为15 min,平衡时吸附量为8.37mg/g;吸附量随初始pH值的降低而增大,当初始pH值为2.8时吸附量达到9.55mg/g;吸附量还随着初始质量浓度的增加而增大,但当初始质量浓度超过20mg/L后吸附量反而下降.  相似文献   

2.
采用共沉淀法合成了铝镁铁三元类水滑石,考察了该类水滑石对水溶液中Cr(VI)的吸附性能。结果表明:在温度为20℃,初始pH值为7的条件下,吸附剂对Cr(VI)的吸附平衡时间约为15min,平衡时吸附量为8.37mg/g;吸附量随初始pH值的降低而增大,当初始pH值为2.8时吸附量达到9.55mg/g;吸附量还随着初始质量浓度的增加而增大,但当初始质量浓度超过20mg/L后吸附量反而下降。  相似文献   

3.
《应用化工》2022,(5):1204-1210
研究吸附时间、pH、污泥投加量和温度等对厌氧颗粒污泥吸附水中孔雀石绿(MG)的影响。结果表明,在MG初始浓度为50 mg/L和60 mg/L时,平衡时间为30 min,在MG初始浓度为70 mg/L和80 mg/L时,平衡时间为50 min;在MG初始浓度为100 mg/L时,厌氧颗粒污泥吸附水中MG的最佳pH为6~8,最佳投加量为2.4 g/L(干重);厌氧颗粒污泥对MG的吸附能力随温度增加而增加,在40℃时最大吸附容量为137.696 mg/g。厌氧颗粒污泥对水中MG的吸附可以采用Redlich-Peterson模型进行描述,表明厌氧颗粒污泥对MG的吸附并非理想的单层吸附,而是物理吸附和生物化学吸附共同作用的结果;MG与厌氧颗粒污泥作用的速率取决于化学吸附,其中液膜内扩散速率是限制厌氧颗粒污泥对MG吸附的主要因素。  相似文献   

4.
采用NaOH处理过的棉花秸秆去除废水中的Pb2+和Cu2+,探究不同因素对Pb2+、Cu2+的吸附效果的影响,确定最佳吸附工艺条件。结果表明,Pb2+最佳吸附条件为:投加量为33.33 g/L,振荡时间为110 min,吸附温度为25℃,溶液初始浓度为15 mg/L,pH值为5.0,去除率达92%;对Cu2+的最佳吸附条件为:投加量26.67 g/L,振荡时间为110 min,吸附温度为55℃,溶液初始浓度为15 mg/L,pH值为5.0,去除率达90.4%。  相似文献   

5.
采用硝酸对文冠果活性炭进行氧化改性,探讨了Ca(2+)溶液初始浓度、吸附温度、时间、pH值对Ca(2+)溶液初始浓度、吸附温度、时间、pH值对Ca(2+)吸附的影响。分析了吸附热力学和动力学,初步探讨了吸附机理。实验表明,当Ca(2+)吸附的影响。分析了吸附热力学和动力学,初步探讨了吸附机理。实验表明,当Ca(2+)的初始浓度为500 mg/L,吸附温度为40℃,吸附时间为120 min,pH值为2时,吸附量最大,可达285.9 mg/g。硝酸改性文冠果活性炭吸附Ca(2+)的初始浓度为500 mg/L,吸附温度为40℃,吸附时间为120 min,pH值为2时,吸附量最大,可达285.9 mg/g。硝酸改性文冠果活性炭吸附Ca(2+)符合伪二级动力学模型和Langmuir等温线模型,吉布斯自由能ΔG°<0、焓变ΔH°<0、熵变ΔS°<0,表明该吸附是一个自发的放热过程。  相似文献   

6.
采用盐酸改性,制备出盐酸改性粉煤灰(HCl-FA),并将其应用于吸附法处理甲基橙(MO)染料废水中.结果表明,(1)通过单因素试验得出最佳的实验条件为:MO染料废水初始浓度为200 mg/L、溶液初始pH值不调节、HCl-FA用量为4g(即10 g/L)、反应温度为室温、吸附30 min.在此条件下,甲基橙的脱色率可以达到90.49%.(2)通过正交法优化实验得出最佳实验条件:MO染料废水初始浓度为200 mg/L、溶液初始pH值为5、HCl-FA用量为4 g(即10 g/L)、反应温度为15℃、吸附30 min.在最佳的实验条件下,MO脱色率可以达到91.09%.  相似文献   

7.
骆欣  敖燕环  徐东耀  路坦 《应用化工》2019,(5):1020-1023
采用高温焙烧法制备改性粉煤灰(MFA),考察了改性粉煤灰投加量、初始pH、吸附时间对水中Pb(Ⅱ)吸附效果的影响,通过吸附动力学方程和吸附等温线方程对吸附机理进行了分析。结果表明,在温度30℃,初始Pb(Ⅱ)浓度40 mg/L,MFA投加量2 g/L,pH为5.5,吸附时间为30 min时,Pb(Ⅱ)的吸附率达到97.97%,水中残留的Pb(Ⅱ)浓度低于1.0 mg/L,满足排放标准的要求。吸附动力学符合拟二级动力学方程,吸附等温线符合Freundlich方程,吸附机制为化学吸附。  相似文献   

8.
通过Acidithiobacillus ferrooxidans(简称A.f菌)代谢制备次生高铁矿物,研究矿物用量、吸附时间和初始Pb2+浓度对吸附性能的影响,借助等温吸附技术探讨该矿物对Pb2+的吸附平衡特征。结果表明,在Pb2+初始浓度为15 mg/L、体积为50 m L、温度30℃、pH为3.0、吸附时间为60 min、矿物用量为10 g/L的条件下,次生矿物对Pb2+的静态吸附率达90.67%,符合Langmuir静态吸附模型,最大吸附量达2.02 mg/g,吸附平衡常数(KL)为9.27 L/mg。  相似文献   

9.
本文以活性炭作为吸附剂处理含硫氰酸钠废水。实验结果表明,吸附的最佳条件为:吸附温度为20℃、吸附时间为40min、活性炭投加量为0.4g、废水pH为5。在此条件下,使100mL废水中硫氰酸钠的浓度从200mg/L降到15mg/L,硫氰酸钠去除率达到92.5%。  相似文献   

10.
坡缕石黏土进行简单提纯后,和海藻酸钠、纯水充分混合(物料比为坡缕石∶海藻酸钠∶水=100 g∶9 g∶77 m L),并在潮湿密闭环境下浸润24 h,制成粒径5 mm颗粒。(105±2)℃干燥后,焙烧2 h,制备颗粒状坡缕石吸附剂,采用XRD、BET进行表征,通过静态吸附实验探讨了pH值、Pb(2+)初始浓度、反应时间和反应温度对吸附的影响,确立了颗粒化吸附剂对Pb(2+)初始浓度、反应时间和反应温度对吸附的影响,确立了颗粒化吸附剂对Pb(2+)的吸附动力学和吸附等温线。结果表明,在颗粒化后,坡缕石黏土主要XRD衍射峰得以保留;600℃下烧结,使比表面积降低,而孔容积增大。随着pH值增大,坡缕石颗粒吸附剂对Pb(2+)的吸附动力学和吸附等温线。结果表明,在颗粒化后,坡缕石黏土主要XRD衍射峰得以保留;600℃下烧结,使比表面积降低,而孔容积增大。随着pH值增大,坡缕石颗粒吸附剂对Pb(2+)的吸附量增加;随着初始浓度的增加,颗粒吸附剂对Pb(2+)的吸附量增加;随着初始浓度的增加,颗粒吸附剂对Pb(2+)的吸附去除率逐渐降低,平衡吸附量则逐渐上升。当pH值为5.0,Pb(2+)的吸附去除率逐渐降低,平衡吸附量则逐渐上升。当pH值为5.0,Pb(2+)初始浓度2 500 mg/L时,平衡吸附量达59.85 mg/g。吸附动力学符合颗粒内扩散模型。颗粒化坡缕石吸附剂对Pb(2+)初始浓度2 500 mg/L时,平衡吸附量达59.85 mg/g。吸附动力学符合颗粒内扩散模型。颗粒化坡缕石吸附剂对Pb(2+)的吸附符合Langmuir吸附等温式,属于吸热反应。  相似文献   

11.
通过海藻酸钠包裹氧化石墨烯(GO)和Bacillus,合成了吸附剂Bacillus-GO。对吸附前和吸附后的BacillusGO进行了表征,通过单因素实验研究了pH、反应时间、初始U(Ⅵ)含量、吸附剂用量等对Bacillus-GO吸附U(Ⅵ)的影响,并运用动力学和等温线研究了吸附过程。结果表明,在pH为6.0、吸附剂用量0.5 g/L、30℃、初始U(Ⅵ)的质量浓度15 mg/L条件下,U(Ⅵ)的最大吸附量为30.73 mg/g。吸附符合准2级动力学、Langmuir等温线。经5次解吸附-重复利用实验,Bacillus-GO对U(Ⅵ)的吸附量仍高于80%。Bacillus-GO是一种较为理想的U(Ⅵ)生物吸附材料。  相似文献   

12.
以环氧氯丙烷为交联剂,合成了羟丙基-β-环糊精交联聚合物,考察了振荡时间、溶液pH、吸附温度以及苯酚初始浓度等吸附条件对聚合物吸附苯酚性能的影响,考察了吸附苯酚前后聚合物的IR及XRD谱。结果表明,聚合物对苯酚的吸附量随着苯酚初始浓度增加而提高,苯酚初始浓度为500mg/L时,振荡10 min,吸附量能达到14.30mg/g,在pH〈7和温度为15℃时吸附效果好。IR及XRD研究表明,聚合物对苯酚的吸附是形成包合物。  相似文献   

13.
时光霞  刘郁 《广东化工》2014,(8):104-105,107
文章利用β-环糊精(β-CD)的结构和性能对含苯酚废水进行处理,通过实验考查了吸附时间、pH、温度、用量、废液浓度等因素对吸附率的影响,得出实验的最佳工艺条件为:吸附时间为240 min,pH为5~7,β-CD用量为4 g/L,苯酚初始浓度为100 mg/L,吸附温度40℃,最高吸附率可以达到42.5%。进一步研究在30℃条件下,β-CD吸附苯酚废水过程符合Freundlieh吸附模型。  相似文献   

14.
利用聚乙烯吡咯烷酮(PVP)和石墨烯与染料分子的结合特性,合成了PVP功能化石墨烯纳米材料(PVPGNs),对其进行了表征,并考察该材料对水中酸性红(ASG)和孔雀石绿(MG)等染料的吸附能力。结果表明,当pH为7、温度为40℃、时间为10 min、材料的质量浓度1 g/L时,ASG的最大吸附率达到93.41%,最大吸附量达到93.41 mg/g;当pH为5、温度为40℃、时间为10 min、材料用量0.5 m L,材料的质量浓度1 g/L时,MG的最大吸附率达到83.38%,最大吸附量达到83.38 mg/g。等温吸附模型的拟合结果表明,PVP-GNs对ASG和MG的理论最大吸附量分别达到1 887、1 976 mg/g。且PVP-GNs具备良好的染料脱附性能。因此,该材料在染料废水脱色方面具有很大的应用潜力与价值。  相似文献   

15.
以脐橙皮为模板、贝壳粉为原料合成羟基磷灰石(HAP)并用于去除水溶液中的Pb2+。探讨了HAP投放量、pH、反应时间、初始浓度、温度等因素对HAP吸附Pb2+的影响。结果表明,HAP的最佳用量为0.1 g,最佳pH为5.0,平衡时间2 h。等温吸附较好的符合Freundlich模型,15℃、25℃、35℃下的饱和吸附量分别为83.37 mg/g、90.06 mg/g、109.44 mg/g。吸附的机理主要是离子交换,孔内扩散是速控步骤。  相似文献   

16.
利用十六烷基三甲基溴化铵(CTAB)对颗粒活性炭进行改性。用红外光谱(FT-IR)、X射线衍射(XRD)、场发射扫描电子显微镜(FESEM)和氮吸附脱附法对改性活性炭的结构和组成进行表征。用单一变量法研究了CTAB的质量浓度和初始pH值对CTAB活性炭改性的影响,研究了吸附时间、吸附温度、苯酚初始质量浓度、苯酚pH、CTAB改性活性炭投加量等对苯酚去除率的影响,并对吸附过程进行了动力学研究。得到了最佳吸附条件为:以质量浓度为2g/L的CTAB改性活性炭为吸附剂,CTAB改性活性炭投加量为7g/L、吸附温度为35℃、吸附时间为90min、苯酚初始质量浓度为200mg/L、初始pH=6时,苯酚去除率达到94.76%,CTAB改性活性炭的吸附量为27.07mg/g。Langmuir等温吸附模型可较好地描述CTAB改性活性炭对水中苯酚的等温吸附过程,通过Langmuir模型计算得到吸附剂对苯酚的最大单位吸附量为72.62mg/g。CTAB改性活性炭对苯酚的吸附过程符合拟二级动力学方程。  相似文献   

17.
采用FTIR和SEM对纤维素-g-聚丙烯酸/丙烯酰胺/蒙脱土(LNC-g-PAA/AM/MMT)纳米复合高吸水性树脂的结构进行表征。研究亚甲基蓝染料的初始质量浓度、吸附时间、吸附温度和pH等不同条件下,对LNC-gPAA/AM/MMT吸附该染料吸附量的影响。此外,在最佳条件吸附饱和时,改变解吸时间、HCl浓度等研究LNC-gPAA/AM/MMT的解吸性能。结果表明:初始质量浓度为2 500 mg/L,120 min,30℃,pH=5时,LNC-g-PAA/AM/MMT的吸附量高达2 038.7 mg/g。整个过程很好地符合伪二级动力学模型和Langmuir等温线。在解吸时间120 min,HCl浓度0.05 mol/L时,解吸率高达73.16%。  相似文献   

18.
采用农林废弃物核桃壳、花生壳和木屑对重金属铅进行吸附研究。探讨反应时间、温度、pH值、吸附剂用量和初始Pb(Ⅱ)浓度以及吸附剂改性对吸附效果的影响,结果表明,花生壳对Pb(Ⅱ)的吸附效果优于核桃壳和木屑,其在45℃,pH值6.0,Pb(Ⅱ)初始浓度100 mg/L,花生壳投入量10 g/L的条件下反应240 min,其吸附率为88.1%,花生壳改性后的吸附率可达97.8%。花生壳、核桃壳和木屑对Pb(Ⅱ)的吸附均可用Langmuir方程描述。  相似文献   

19.
刘洋  涂宁宇  谢文玉  金仁和 《当代化工》2012,(8):774-775,777
采用均匀设计优化实验方案并确定了油页岩吸附水中 Cu2+的最优条件.设定吸附时间(X1)、初始浓度(X2)、吸附剂投加量(X3)、溶液 pH(X4)和水浴温度(X5)为5个影响因子,通过均匀设计设定了5因素12×6×6×6×3水平的实验.逐步回归分析表明,对油页岩吸附 Cu2+有显著影响的因素依次是 pH、吸附时间、吸附剂投加量和吸附温度.初始浓度对吸附效果起负作用.极大值回归分析确定吸附的最佳条件为 pH=5.15, Cu2+初始浓度为28.49 mg/L,吸附剂投加量为0.28 g,吸附时间为162 min,吸附温度32.5℃.在此条件下,实测 Cu2+的吸附率达99%.  相似文献   

20.
周玉青  李强 《广东化工》2014,41(21):78-79,81
研究了在超声辅助条件下β-环糊精(β-CD)处理含酚(苯酚)废水的吸附规律和处理苯酚废水的最佳工艺条件:超声频率20 k Hz,超声声强0.2 W/cm2,苯酚初始浓度100 mg/L,p H为6.0,溶液体积100 m L,反应温度40℃,吸附时间240 min,β-CD用量40 g/L,去除率最高达到1.28 mg/g,比单独使用环糊精提高0.26 mg/g。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号