首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
采用聚醚多元醇、多亚甲基多苯基多异氰酸酯(PAPI)、泡沫稳定剂、催化剂、高效阻燃剂、发泡剂、木粉等原料通过一步法制备了聚氨酯硬质泡沫材料,研究了不同木粉添加比例的聚氨酯硬质泡沫材料的压缩强度、导热系数、极限氧指数和降解性能。结果表明,随着木粉添加量的增加,压缩强度呈现减少的趋势,聚氨酯硬质泡沫的导热系数变化不大,极限氧指数则呈下降趋势,降解性能随着木粉添加量的增加而逐渐提高。  相似文献   

2.
采用聚醚多元醇、多异氰酸酯、泡沫稳定剂、液态阻燃剂、催化剂和水制备了全水发泡阻燃硬质聚氨酯泡沫塑料,研究了水用量、催化剂、泡沫稳定剂及阻燃剂对聚氨酯硬泡性能的影响。结果表明,水用量影响聚氨酯硬泡的泡沫密度、压缩强度、尺寸稳定性、吸水率等性能;不同催化剂复配影响聚氨酯硬泡的泡孔结构;泡沫稳定剂影响泡孔均匀性和聚氨酯硬泡的导热性能;磷酸三乙酯(TEP)对硬泡阻燃性能的影响优于磷酸三氯丙酯(TCPP)和阻燃聚醚多元醇(F-7190)。随TEP用量的增加,聚氨酯硬泡的氧指数增大,压缩强度降低;随F-7190用量增加,聚氨酯硬泡的氧指数略有增大,压缩强度先增大后变小。  相似文献   

3.
对利用木质素磺酸钠溶剂液化产物与聚醚多元醇复配制备改性硬质聚氨酯泡沫材料的阻燃性能进行了研究。采用甲基膦酸二甲酯(DMMP)为阻燃剂,对添加量为10%~16%范围内的改性聚氨酯泡沫材料的结构与性能进行了研究。研究结果表明,DMMP与发泡体系中的其他组分相容性好,DMMP的添加使发泡速度有所下降,但对材料的微观形貌影响不大。与未添加DMMP的泡沫材料相比,添加DMMP的泡沫材料极限氧指数提高,阻燃性增强,当DMMP添加量为16%时,材料的极限氧指数最大,为25.3;材料的压缩强度与表观密度随DMMP添加量的变化而变化,当DMMP添加量为11%时,压缩强度和表观密度都达到最大值,分别为70.55kg/m~3和0.47MPa。综合比较木质素磺酸钠改性硬质聚氨酯泡沫的力学性能和阻燃性能,当DMMP添加量为13%时,综合性能表现较优,压缩强度为0.30MPa,极限氧指数为24.99。  相似文献   

4.
硬质聚氨酯泡沫(PUR)具有优异的保温性能、防水性能以及化学稳定性,但由于其潜在的火灾危险性,严重影响了它的使用范围。通过添加阻燃剂改善PUR的阻燃性能得到了广泛的关注,但单一的阻燃剂对阻燃性能的提升较小。以密胺树脂和氢氧化铝分别作为包覆材料对聚磷酸铵(APP)进行包覆,得到三聚氰胺甲醛树脂微胶囊化APP(MF-APP)和氢氧化铝微胶囊化APP(ATH-APP)。分别以MF-APP、ATH-APP以及未经包覆的APP作为白料,以多异氰酸酯为黑料,采用一步法制得全水发泡阻燃聚氨酯硬泡(RPUF)。研究APP、MF-APP、ATH-APP的表面形态及三种阻燃剂对聚氨酯硬泡阻燃性、热稳定性的影响,并将结果进行对比。研究表明,添加的阻燃剂质量分数为25%时,聚氨酯硬泡的极限氧指数达到最大值,添加MF-APP的RPUF极限氧指数最大为26.3%,最终成炭量约为12%,相较于ATH-APP与APP的成炭量有所提高。实验证明三聚氰胺甲醛树脂包覆聚磷酸铵能有效提高阻燃聚氨酯硬泡的阻燃性能和成炭量,提高了阻燃聚氨酯硬泡的热稳定性。  相似文献   

5.
研究了无卤、含磷添加型阻燃剂红磷、包覆红磷、聚磷酸铵、包覆聚磷酸铵、含磷膨胀型阻燃剂PNP、三聚氰胺焦磷酸盐等6种阻燃剂对硬质聚氨酯泡沫塑料阻燃及力学性能的影响。结果表明,随着阻燃剂添加量的增加,阻燃硬质聚氨酯泡沫塑料的极限氧指数(LOI)总体上呈升高趋势,拉伸强度呈先上升后下降趋势,而冲击强度呈逐渐下降趋势。包覆红磷和包覆聚磷酸铵阻燃材料的阻燃性能和力学性能均明显好于普通红磷和聚磷酸铵阻燃剂,PNP阻燃材料具有最佳的阻燃性能和力学性能,当PNP添加量为25%时,阻燃材料的LOI为29.5%,拉伸强度和冲击强度分别为5.3 MPa和8.7 kJ/m2。  相似文献   

6.
采用阻燃剂三氯乙基磷酸酯(TCEP)制备了阻燃聚氨酯封孔材料,研究了阻燃剂TCEP添加量对聚氨酯封孔材料阻燃性能、膨胀倍数和压缩强度的影响,分析了阻燃聚氨酯材料的微观形貌和红外光谱图谱。结果表明,TCEP添加量为20 %时,聚氨酯的极限氧指数由20.0 %提高到23.4 %,膨胀倍数随着TCEP的加入先降低后升高;阻燃剂不会改变聚氨酯的主体结构,但是影响泡沫性能和形貌。  相似文献   

7.
以氢氧化铝、三聚氰胺和聚磷酸铵为阻燃剂制备了阻燃聚氨酯硬质泡沫,研究了添加氢氧化铝前后阻燃剂用量对聚氨酯(PU)硬泡的阻燃性能和力学性能的影响。结果表明,铝/磷/氮复配阻燃体系的阻燃效果优于磷/氮阻燃体系,阻燃剂总添加量达30份时,PU硬泡同时具备较好的阻燃性能和力学性能,氧指数为32,烟密度为74,平均燃烧时间为31 s,其压缩强度和拉伸强度分别为6.52 MPa和6.16 MPa。  相似文献   

8.
卢林刚  周霞  赵敏 《塑料》2012,41(1):9-12
将磷/溴单分子阻燃剂1,3,5-三(5,5-二溴甲基-1,3-二氧杂己内磷酰氧基)苯(FR)作用于硬质聚氨酯泡沫,制备出阻燃复合材料(FR/RPUF),利用极限氧指数、水平燃烧、锥形量热研究FR对硬质聚氨酯泡沫的阻燃性能及火灾燃烧性能的影响。结果发现:当FR添加量为15%时,阻燃聚氨酯泡沫的LOI达到24.1%,水平燃烧达到HF-1级,热释放速率平均值、热释放速率峰值、有效燃烧热及一氧化碳平均释放量分别降低78.7%、78.4%、57.1%和32.2%,硬质聚氨酯泡沫材料火灾危险性大幅度降低。  相似文献   

9.
《塑料科技》2016,(9):85-88
将自行研究生产的三嗪膨胀阻燃剂(IFR)添加到聚氨酯中制备阻燃硬质发泡聚氨酯(RPUF)材料,通过极限氧指数(LOI)研究了材料的阻燃性能,通过热重分析(TGA)测试研究了材料的热稳定性和成炭性能,通过扫描电镜(SEM)的测试了材料的泡孔结构及燃烧后炭层的表面形貌,同时还研究了阻燃剂添加量对材料的阻燃性能及压缩强度的影响。结果表明:纯RPUF材料的氧指数仅为18.7%,在空气中极易燃烧。当阻燃剂的添加量为25%时,材料的氧指数值提高到了26.1%,同时IFR的加入使得RPUF材料的压缩强度显著提升。TGA结果表明:阻燃剂的添加使得材料的起始热分解温度有所降低,但材料的残炭量得到了很大程度的提高。SEM结果表明:阻燃剂的加入对RPUF材料的泡孔结构影响不大,同时使材料燃烧后的炭层更加的致密和均匀,从而提高了材料的阻燃性能。  相似文献   

10.
王帅  杨富凯  徐新宇 《化工学报》2023,(3):1399-1408
利用环氧大豆油分别与乙醇和苯基磷酸发生开环反应,制备了两种不同的大豆油基多元醇(Polyol-E与Polyol-PPOA),将二者按照不同的配比与异氰酸酯(PM200)反应制备了硬质聚氨酯泡沫材料。对混合多元醇制备的硬质聚氨酯泡沫材料的泡孔结构、密度、力学性能及阻燃性能进行了测试和分析。测试结果表明,随着Polyol-PPOA质量分数的增加,样品的泡孔数量先减少后增加,泡孔尺寸先增大后减小。密度随着Polyol-PPOA的用量增加先增加后减小。压缩强度呈现先降低后升高的趋势,Polyol-PPOA为70%(质量)时的压缩强度达到0.133 MPa,在800℃时的残炭率达到17.57%,极限氧指数也在这时达到最高,为23.10%。  相似文献   

11.
聚氨酯/环氧树脂互穿网络聚合物硬质泡沫机械性能研究   总被引:3,自引:0,他引:3  
采用同步法合成了聚氨酯/环氧树脂互穿网络聚合物(PU/EP IPN)硬质泡沫,对机械性能进行了研究。结果表明,与纯聚氨酯硬质泡沫相比,PU/EP IPN硬质泡沫的压缩强度和弯曲强度明显提高,在PU/EP IPN硬质泡沫中,随环氧树脂含量增加,PU/EP IPN硬质泡沫压缩强度和弯曲强度随之增大,当E-39D质量分数增加到24.2%时,PU/EP IPN硬质泡沫压缩强度和弯曲强度出现最大值;PU/EP IPN硬质泡沫机械强度随材料密度的增大而增加;随着环氧树脂中环氧值的增加,PU/EP IPN硬质泡沫的压缩强度、弯曲强度和拉伸强度均呈逐渐升高的趋势。  相似文献   

12.
零ODP且无卤阻燃型聚氨酯硬泡的制备及性能研究   总被引:1,自引:0,他引:1  
以粉状生物发泡剂(PU-88)为零ODP发泡剂,甲基磷酸二甲酯(DMMP)为主要阻燃剂,三氧化二锑(Sb2O3)为辅助阻燃剂,制备了零ODP且无卤阻燃型硬质聚氨酯泡沫(RPUF)。利用氧指数仪研究了阻燃聚酯多元醇和添加型阻燃剂对聚氨酯硬泡阻燃性能的影响,并采用扫描电镜图分析了RPUF泡孔的大小及闭孔率。结果表明,随着阻燃剂(DMMP)用量的增加,氧指数(LOI)在上升到一定幅度后趋缓;当DMMP为泡沫总质量的25%时,可以制得力学性能、泡沫孔径和阻燃性能较佳平衡的阻燃泡沫材料。在该条件下,泡沫的压缩强度为0.408 MPa,泡沫平均孔径为70μm~150μm,闭孔率可达到96%,导热系数为0.0191W·(m·K)-1和LOI值达到32.1%;用DMMP与Sb2O3的复配使用效果更佳,LOI值达到32.6%。  相似文献   

13.
通过蓖麻油与甘油进行酯交换反应制备蓖麻油多元醇,并应用于聚氨酯阻燃硬泡的制备,研究了阻燃剂类型、添加量及蓖麻油多元醇的添加量对聚氨酯硬质泡沫(RPUF)综合性能的影响。结果表明,蓖麻油多元醇的添加量对阻燃RPUF氧指数影响不大,只是添加量大于50%时会导致泡沫收缩:添加不同阻燃剂后发现甲基磷酸二甲酯(DMMP)的阻燃效果好,DMMP合适用量为多元醇组分的20%~30%。  相似文献   

14.
以聚合MDI和聚醚多元醇为原料,优选发泡剂,加入改性超细煤粉作为填充剂,制备出硬质聚氨酯泡沫材料。通过测试煤粉填充聚氨酯泡沫材料的表观密度、回弹率、压缩强度和氧指数进行分析。结果表明,发泡剂H用量0.1 g时制备的聚氨酯泡沫压缩强度、回弹率较好;加入KH550和KH560改性的超细煤粉,随着煤粉用量增加,聚氨酯泡沫的压缩强度、氧指数得到明显改善。当KH560改性煤粉用量为15份时,聚氨酯性能最优,压缩强度达到0.40MPa,氧指数达到21%,回弹率为5.4%,密度为0.064 g/cm~3。  相似文献   

15.
以微米级氢氧化铝(ATH)作为阻燃剂,采用"一步法全水发泡"工艺成功地制备了高性能聚氨酯硬质泡沫复合材料。采用万能材料试验机、邵氏硬度计、氧指数测量仪、动态热机械分析(DMA)、扫描电子显微镜(SEM)、热失重分析(TGA)等研究了不同ATH添加量对聚氨酯泡沫(PUF)的力学、阻燃、热稳定及阻尼性能和材料结构的影响。结果表明,在ATH添加量高达168 phr时,聚氨酯能很好地发泡并保持良好的泡孔结构,PUF/ATH力学性能最佳,压缩强度和邵氏C硬度分别为0.37 MPa和72.5;极限氧指数(LOI)可达35.4%;且阻尼性能也较为优异,(tanδ)max=0.892 7,有效阻尼温度(tanδ>0.3):68.47~93.51℃。  相似文献   

16.
以三聚氰胺改性腰果酚基阻燃多元醇和异氰酸酯为主要原料,采用环戊烷为发泡剂,添加无卤阻燃膨胀型阻燃剂石墨(EG)、匀泡剂等制备无卤阻燃生物基硬质聚氨酯泡沫塑料。探讨结构阻燃型聚醚多元醇、阻燃剂的添加对生物基硬质聚氨酯泡沫的热性能、燃烧性能和力学性能的影响。结果表明,随着阻燃剂的增加,导热系数和固化时间增加;添加相同阻燃剂的泡沫样品其阻燃性能随着添加量的增加而增加,EG在提高氧指数方面优于聚磷酸铵(APP)和乙基膦酸二乙酯(DEEP),固体阻燃剂APP和EG在增加力学性能、热稳定性方面较液体阻燃剂DEEP效果好。  相似文献   

17.
反应型磷氮阻燃剂/可膨胀石墨复配阻燃聚氨酯泡沫   总被引:1,自引:0,他引:1       下载免费PDF全文
杨荣  乔红  胡文田  许亮  宋艳  李锦春 《化工学报》2016,67(5):2169-2175
将反应型阻燃剂六(4-磷酸二乙酯羟甲基苯氧基)环三磷腈(HPHPCP)和可膨胀石墨(EG)复配,制备了阻燃聚氨酯泡沫,详细研究了复配阻燃剂对聚氨酯泡沫的物理力学性能、热稳定性以及阻燃性能的影响。结果表明,阻燃聚氨酯泡沫的密度和热导率随着复配阻燃剂中EG含量的增加而升高;压缩强度随着EG含量的增加呈现先增加后降低的趋势。热失重表明复配阻燃剂大大提高了聚氨酯泡沫的热稳定性。聚氨酯泡沫的初始分解温度(T10%)从212.9℃,分别提高到222.0、231.2和243.2℃;700℃残炭量从7.6%分别提高到26.3%、31.6%和37.9%。聚氨酯泡沫的阻燃性能随着复配阻燃剂中EG含量的增加而提高。阻燃聚氨酯泡沫的极限氧指数从19%提高到29%,均能通过UL-94水平燃烧HF-1等级和垂直燃烧V-0等级。  相似文献   

18.
用含磷氮元素的结构型阻燃聚醚多元醇制备硬质聚氨酯泡沫,考察了结构型阻燃聚醚的用量对泡沫物理性能和阻燃性能的影响。结果表明结构型阻燃聚醚加入使泡沫的压缩强度、尺寸稳定性和氧指数均有明显的提高;当结构型阻燃聚醚的质量占聚醚用量的30%,添加适量的混合阻燃剂时,其氧指数达32%以上;此外,在同一阻燃要求下结构型阻燃泡沫制品的阻燃剂添加量明显减少,但泡沫的各项性能得到显著提高。  相似文献   

19.
将反应型阻燃剂六(4-磷酸二乙酯羟甲基苯氧基)环三磷腈(HPHPCP)和可膨胀石墨(EG)复配,制备了阻燃聚氨酯泡沫,详细研究了复配阻燃剂对聚氨酯泡沫的物理力学性能、热稳定性以及阻燃性能的影响。结果表明,阻燃聚氨酯泡沫的密度和热导率随着复配阻燃剂中EG含量的增加而升高;压缩强度随着EG含量的增加呈现先增加后降低的趋势。热失重表明复配阻燃剂大大提高了聚氨酯泡沫的热稳定性。聚氨酯泡沫的初始分解温度(T10%)从212.9℃,分别提高到222.0、231.2和243.2℃;700℃残炭量从7.6%分别提高到26.3%、31.6%和37.9%。聚氨酯泡沫的阻燃性能随着复配阻燃剂中EG含量的增加而提高。阻燃聚氨酯泡沫的极限氧指数从19%提高到29%,均能通过UL-94水平燃烧HF-1等级和垂直燃烧V-0等级。  相似文献   

20.
以多元醇、二异氰酸酯、聚磷酸铵(APP)、三聚氰胺(MA)等为原料,采用一步法,制得阻燃聚氨酯泡沫塑料。研究了不同阻燃剂的用量对聚氨酯泡沫的力学性能、热性能和阻燃性能的影响。结果表明,材料拉伸强度随阻燃剂添加量的增加而增加;材料的极限氧指数和在500℃时的分解残留量均随复合阻燃剂添加量的增加先增大后减小;APP/MA复合阻燃剂的效果好于单组分APP。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号