首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 366 毫秒
1.
Results concerning γ‐irradiation of polymer blends such as HDPE/ground tire rubber (GTR) and PP/HDPE are reported in this article with a special emphasis on the order of processing steps. Irradiation dose varied in the range 0–100 kGy. The two first polymers (HDPE and rubber) are preferentially crosslinked under γ irradiation while PP undergoes chain scission. Mechanical tests and differential scanning calorimetry (DSC) analysis show that the efficiency of the reactive compatibilization by γ irradiation depends greatly on the chronology of γ‐irradiation and injection‐molding steps. Electron spin resonance (ESR) results reveal that numerous radicals remain trapped in the materials after γ‐irradiation even after a long time. Then the effect of irradiation on material properties is different if polymers are melted after irradiation or not. Crosslinking and chain scission are not affected in an equivalent way by the order of processing steps. © 2009 Wiley Periodicals, Inc. J Appl Polym Sci, 2010  相似文献   

2.
Films of different composites based essentially on maize starch (MS)/poly(vinyl alcohol) (PVA) blends were prepared by the solution‐casting technique and subjected to various doses (20–100 kGy) of γ‐radiation. The MS/PVA blends were modified by the addition of glycerol (GY) and a graft copolymer (GP) of MS with acrylamide separately or together with the polymer blend solutions before casting. The γ‐treated composites were evaluated in terms of the apparent viscosity and their suitability as sizing materials for cotton fabrics. The sizeability of these composites for cotton fabrics was assessed in terms of the size removal percentage at different temperatures and the effect on the tensile properties and water absorption. The change in the apparent viscosity with the shear rate showed that γ‐irradiation improved the behavior of MS/PVA blends and their composites with GY or GP as a sizing material for cotton fabrics. Moreover, the improvement in the tensile mechanical properties of the sized cotton fabrics with these composites gave further support to this finding. The results for the size removal percentage and water adsorption indicated that these composites could be removed by washing at 70°C for 10 min. © 2004 Wiley Periodicals, Inc. J Appl Polym Sci 91: 3818–3826, 2004  相似文献   

3.
Blends of poly(ethylene terephthalate) (PET) and poly(ethylene octene) (POE) were prepared by melt blending with various amounts of trimethylolpropane triacylate (TMPTA). The mechanical properties, phase morphologies, and gel fractions at various absorbed doses of γ‐irradiation have been investigated. It was found that the toughness of blends was enhanced effectively after irradiation as well as the tensile properties. The elongation at break for all studied PET/POE blends (POE being up to 15 wt %) with 2 wt % TMPTA reached 250–400% at most absorbed doses of γ‐irradiation, approximately 50–80 times of those of untreated PET/POE blends. The impact strength of PET/POE (85/15 wt/wt) blends with 2 wt % TMPTA irradiated with as little as 30 kGy absorbed dose exceeded 17 kJ/m2, being approximately 3.4 times of those of untreated blends. The improvement of the mechanical properties was supported by the morphology changes. Scanning electron microscope images of fracture surfaces showed a smaller dispersed phase and more indistinct inter‐phase boundaries in the irradiated blends. This indicates increased compatibility of PET and POE in the PET/POE blends. The changes of the morphologies and the enhancement of the mechanical properties were ascribed to the enhanced inter‐phase boundaries by the formation of complex graft structures confirmed by the results of the gelation extraction and Fourier Transform Infrared analyses. © 2012 Wiley Periodicals, Inc. J. Appl. Polym. Sci., 2013  相似文献   

4.
Polymer materials with improved properties can be obtained through polymer blends. As a polymer mixture is generally immiscible and incompatible, it is necessary to develop new methods to improve the interfacial adhesion. The aim of this work is to find formulations and associated processes to upgrade engineering polystyrene (PS) and polycarbonate (PC) polymer blends with the objective of using the best “process‐formulation” couple. In this study, blends of PS/PC were prepared in molten medium using reactive extrusion after UV‐irradiation. The effects of UV‐irradiation on some properties of blends under molten medium were investigated by differential scanning calorimetry (DSC), fourier transform infrared (FTIR), and thermogravimetric analysis (TGA). The data showed that the presence of polycarbonate in the blend increased the tensile strength and elongation at break with respect to pure PS. The mechanical properties of the blends were improved after irradiation. All irradiated blends are thermally more stable than those nonirradiated. Chemical changes can be clearly seen in FTIR spectra through two bands assigned to C?O and OH groups. The mutual influence between the PS/PC polymer blends compositions during UV‐irradiation was studied. PS and PC have different photo‐mechanisms due to the larger UV absorption of polystyrene and formation of more stable tertiary carbon radicals. © 2011 Wiley Periodicals, Inc. J Appl Polym Sci, 2012  相似文献   

5.
A silver–polycarbonate (Ag–PC) matrix was prepared by a γ‐radiation‐assisted diffusion method, and its antibacterial properties were studied. Rutherford backscattering spectroscopy, X‐ray diffraction, and transmission electron microscopy results showed the diffusion of good, crystalline‐structured (face‐centered cubic) silver nanoparticles (AgNPs) inside polycarbonate (PC) after irradiation. Ultraviolet–visible spectroscopic results indicated a blueshift in the surface plasmon resonance of the AgNPs; this revealed a particle size decrease with increasing γ‐radiation dose. This was also supported by the scanning electron microscopy results. The microstructure of the pristine PC and silver‐doped PC was monitored with positron annihilation spectroscopy, and it showed decreases in the free‐volume hole size and fractional free‐volume for Ag–PC and γ‐ray‐irradiated PC. This corroborated the Doppler broadening spectroscopy results. The thermal degradation temperature of PC was increased because of the diffusion of AgNPs in PC. The antibacterial activity of the synthesized Ag–PC matrix was evaluated by the zone of inhibition, and the results demonstrated its bacterial growth inhibition ability. The results indicate the potential to produce an Ag–PC matrix for various applications in medical and food industries. © 2016 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2016 , 133, 43729.  相似文献   

6.
Biodegradable polymer blends prepared by blending poly(3‐hydroxybutyrate) (PHB) and corn starch do not form intact films due to their incompatibility and brittle behavior. For improving their compatibility and flexibility, poly(vinyl acetate) (PVAc) was grafted from the corn starch to prepare the PVAc‐modified corn starch (CSV). The resulting CSV consisted of 47.2 wt% starch‐g‐PVAc copolymer and 52.8 wt% PVAc homopolymer and its structure was verified by FT‐IR analysis. In comparison with 35°C of the neat PVAc, the glass transition temperature (Tg) of the grafted PVAc chains on starch‐g‐PVAc was higher at 44°C because of the hindered molecular mobility imposed from starch on the grafted PVAc. After blending PHB with the CSV, structure and thermal properties of the blends were investigated. Only a single Tg was found for all the PHB/CSV blends and increased with increasing the CSV content. The Tg‐composition dependence of the PHB/CSV blends was well‐fitted with the Gordon‐Taylor equation, indicating that the CSV was compatible with the PHB. In addition, the presence of the CSV could raise the thermal stability of the PHB component. It was also found that the presence of the PHB and PVAc components would not hinder the enzymatic degradation of the corn starch by α‐amylase. POLYM. ENG. SCI., 55:1321–1329, 2015. © 2015 Society of Plastics Engineers  相似文献   

7.
Four types of sago starch were incorporated into a poly(ε‐caprolactone) (PCL) matrix, native, predried, thermoplastic starch (TPS) granules and TPS. All systems were found to be phase‐separated. Tensile properties were obtained after formulation of various mixtures and processing of suitable test specimens. It was found that elongation at break of composites comprising native starch and thermoplastic starch decreases almost linearly with volume fraction of starch whereas tendencies to nonlinear dependencies were observed for predried and thermoplastic starch granules. Except for composites containing native starch, tensile strength was found to decrease linearly with volume fraction of starch. However, statistical analysis of the corresponding regression coefficients shows that the coefficients ruling the compostion dependence of tensile properties are not significantly different for the four starch types. One may conclude that in all cases, tensile properties decrease almost linearly with volume fraction and maximum volume fraction of starch loading is around 0.6. Scanning electron micrographs of fracture surfaces revealed weak interfacial adhesion between sago starch and the polymer matrix.  相似文献   

8.
Miscible polymer blends based on various ratios of poly(vinyl acetate) (PVAc) and poly(methyl methacrylate) (PMMA) were prepared in film form by the solution casting technique using benzene as a common solvent. The thermal decomposition behavior of these blends and their individual homopolymers before and after γ‐irradiation at various doses (50–250 kGy) was investigated. The thermogravimetric analysis technique was utilized to determine the temperatures at which the maximum value of the rate of reaction (Tmax) occurs and the kinetic parameters of the thermal decomposition. The rate of reaction curves of the individual homopolymers or their blends before or after γ‐ irradiation displayed similar trends in which the Tmax corresponding to all polymers was found to exist in the same position but with different values. These findings and the visual observations of the blend solutions and the transparency of the films gave support to the complete miscibility of these blends. Three transitions were observed along the reaction rate versus temperature curves; the first was around 100–200°C with no defined Tmax, which may arise from the evaporation of the solvent. The second Tmax was in the 340–380°C range, which depended on the polymer blend and the γ‐irradiation condition. A third transition was seen in the rate of reaction curves only for pure PVAc and its blends with PMMA with ratios up to 50%, regardless of γ‐ irradiation. We concluded that γ‐irradiation improved the thermal stability of PVAc/PMMA blends, even though the PMMA polymer was degradable by γ irradiation. © 2005 Wiley Periodicals, Inc. J Appl Polym Sci 99: 1773–1780, 2006  相似文献   

9.
Maleic anhydride (MA) and dicumyl peroxide (DCP) were used as crosslinking agent and initiator respectively for blending starch and a biodegradable synthetic aliphatic polyester using reactive extrusion. Blends were characterized using dynamic mechanical and thermal analysis (DMTA). Optical micrographs of the blends revealed that in the optimized blend, starch was evenly dispersed in the polymer matrix. Optimized blends exhibited better tensile properties than the uncompatibilized blends. X‐ray photoelectron spectroscopy supported the proposed structure for the starch–polyester complex. Variation in the compositions of crosslinking agent and initiator had an impact on the properties and color of the blends. POLYM. ENG. SCI. 46:248–263, 2006. © 2006 Society of Plastics Engineers  相似文献   

10.
Polymeric materials with improved properties can be obtained through polymer blends. As a polymer mixture is generally immiscible and incompatible, it is necessary to use compatibilizers to improve the interfacial adhesion. Polyamide 6 (PA‐6) is an attractive polymer to engineering applications; however, it reveals processing instability and relatively low‐notched impact strength. This behavior can be modified by blending with acrylonitrile–butadiene–styrene (ABS) copolymer. In this study, blends of PA‐6 with ABS were prepared using gamma irradiation, and the effects of ABS and ionizing radiation on the properties of PA‐6/ABS blends were investigated by differential scanning calorimetry (DSC), Fourier transform infrared (FTIR), X‐ray diffraction (XRD), thermogravimetric analysis (TGA), and scanning electron microscopy (SEM) techniques. The data showed that the presence of ABS (30 wt%) in the blend decreased the tensile strength and elongation at break with respect to pure PA‐6. The decrease in the mechanical property was observed at doses 30 and 50 kGy. ABS showed strong effect on the crystallization of PA‐6 in the PA‐6/ABS binary blends. All irradiated blends are thermally more stable than those non‐irradiated. Chemical changes can be clearly seen in FTIR spectra through two bands assigned for N? H and OH? groups. POLYM. ENG. SCI., 2008. © 2007 Society of Plastics Engineers  相似文献   

11.
Bionanocomposites based on poly(3‐hydroxybutyrate) (PHB) and starch plasticized with glycerol and water [thermoplastic starch (TPS)] with organically modified montmorillonite clay as a nanofiller were obtained by melt‐blending. The influence of the clay and TPS on the thermal and mechanical properties of the resultant bionanocomposite was investigated by various techniques, such as X‐ray diffraction (XRD), scanning electron microscopy, transmission electron microscopy (TEM), atomic force microscopy (AFM), thermogravimetric analysis, differential scanning calorimetry, and nanoindentation. The results obtained by AFM showed that bionanocomposites have a surface roughness of 30.88 nm, compared to 14.53 nm for processed PHB. This result is obtained due to the migration of clay layers to the surface. From XRD and TEM it was determined that the clay layers of the bionanocomposites are completely separated. The hardness and elastic moduli of bionanocomposites have values similar to those of PHB, improving the drawbacks of the PHB–TPS blends (65:35 weight ratio). The thermal properties do not present significant changes, and only the degree of crystallinity decreased with increasing clay content. © 2017 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2017 , 134, 45217.  相似文献   

12.
The effects of γ‐radiation on a low‐density polyethylene (LDPE) were investigated by novel techniques, such as crystallization analysis fractionation and preparative fractionation, to analyze and compare their performance with other analytical procedures such as DSC, FTIR, and GPC. The LDPE was thus irradiated with four different doses of γ‐radiation. Different fractions were obtained from these irradiated materials by preparative fractionation, which were characterized by the above‐mentioned analysis techniques. The changes in the morphology and chemical structure of LDPE after the irradiation were analyzed and it was found that both oxidative scission and crosslinking are phenomena related to the exposure of LDPE at high‐energy radiation. Crystallization analysis fractionation and preparative fractionation proved to be suitable techniques to characterize the effects of γ‐radiation on a low‐density polyethylene material. © 2004 Wiley Periodicals, Inc. J Appl Polym Sci 94: 1803–1814, 2004  相似文献   

13.
In the present work, we extend the investigation on the influence of processing conditions on the morphology, the mechanical properties, and the rheology of the blends of thermoplastic polyurethane (TPU) and ethylene–propylene–diene monomer elastomer (EPDM). Scanning and transmission electron microscopies show that the dual‐phase continuous morphology of the blends was strongly dependant on the EPDM composition, processing temperature, and the shear rates. The network structure of the EPDM domain in TPU matrix became finest and most regular for the blends containing 7 wt % EPDM. It was also found that high shear rate favored the formation of the perfect network structure. Furthermore, the blends prepared at 180°C present finer and more perfect network structure than those at the other processing temperatures. The competition of compatible and incompatible segments of TPU with EPDM during melt blending plays an important role in development of the dual‐phase continuous morphology. This was reflected through the influence of processing conditions on the rheological properties, and was also verified by the Davies equation's prediction. The tensile properties present a significant improvement with addition of EPDM, and obtained the optimum value for the blends containing 7 wt % EPDM. The influence of different processing parameters on the mechanical properties is associated with their influence on the morphology, and better tensile properties are obtained in the processing conditions, in which, the finer and more perfect network structure of EPDM domain is presented. These facts confirm that the dual‐phase continuous morphology is the main advantage for higher tensile strength, elongation at break, and Young's modulus can be well controlled by different processing conditions for the improvement of mechanical properties. © 2006 Wiley Periodicals, Inc. J Appl Polym Sci 102: 5472–5482, 2006  相似文献   

14.
The solutions and the thin films of poly[9,9‐dioctyl‐2,7‐fluorene‐alt‐2,5–(3‐hexyl‐sulfonylthiophene)] (PFSO2T) and its binary blends with other nonconjugated polymers such as poly(methyl methacrylate) (PMMA), polycarbonate (PC), and ethylene vinyl acetate copolymer (EVA) can be prepared by different concentrations from a polymer solution. Binary polymer blends can increase the absorbance and photoluminescence intensities in the solid state due to nonconjugated polymers can act as dispersion agents which can reduce the interchain interaction or the aggregation of the conjugated polymers. Photoluminescence intensity of the thin films of fluorescent polymers blending with ethylene vinyl acetate copolymers exhibited six times higher than that of the neat fluorescent polymers. The PFSO2T/EVA binary blends reveal the least extent of optical degradation of around 20% compared to those binary blends in both absorption and emission intensities after the irradiation under the UV‐light for 20 h. The cross‐sectional morphology of fluorescent polymers blending with ethylene vinyl acetate copolymers reveals little aggregation and better phase separation among the other binary polymer blends. © 2017 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2017 , 134, 44969.  相似文献   

15.
Novel natural clay–polymer hybrid materials are prepared from natural bentonite that was modified with silane‐coupling agent, γ‐methacryloxypropyltrimethoxysilane (A‐174), and acrylonitrile. By changing the molar ratio of acrylonitrile in the initial monomer feed, several clay–hybrid materials were prepared. The structure and thermal stability of hybrid materials were investigated by various methods. The A‐174‐modified bentonite was dispersed in a solution of acrylonitrile in toluene. In this system, radical polymerization in the presence of AIBN was carried out. Product formed at the particle surface was either physically bound by entanglement or chemically bound by covalent bonding to the silane. In this way, core–shell morphology was obtained with an inorganic core and a polymer shell. The results showed that bonding at the surface of bentonite took place by hydrolytic cleavage of methoxy groups of A‐174 with hydroxy groups of bentonite. © 2002 Wiley Periodicals, Inc. J Appl Polym Sci 84: 164–171, 2002; DOI 10.1002/app.10289  相似文献   

16.
In this work, ternary polymer blends based on (polyamide 6)/(poly[styrene‐co‐acrylonitrile])/(poly[styrene‐b‐{ethylene‐co‐butylene}‐b‐styrene]) (SEBS) triblock copolymer and a varying concentration of the reactive (maleic anhydride)‐grafted SEBS were prepared by using a melt‐blending process. The effects of the material parameters (composition of ternary blends and SEBS/[{maleic anhydride}‐grafted SEBS] concentration ratio) and blending sequence on the morphological and mechanical properties of ternary blends were studied. Taguchi experimental design methodology was employed to design the experiments and select the material and processing parameters for the optimized mechanical properties. Tensile properties (Young's modulus and yield stress) and impact strength were considered as the response variables. It was demonstrated that there is a meaningful relationship between the composition of blends, processing parameters, observed phase structure, and obtained mechanical properties. The mechanical tests showed that the highest impact strength was achieved as the dispersion of the rubbery phase achieved an optimum size of about 1 μm. J. VINYL ADDIT. TECHNOL., 23:329–337, 2017. © 2015 Society of Plastics Engineers  相似文献   

17.
Cast films of polymer blends essentially based on poly(vinyl butyral) (PVB) and equal ratios of polystyrene (PS) and poly(ethylene glycol) (PEG) were prepared from benzene and butyl alcohol solutions of the individual polymers. The effect of γ‐irradiation on the thermal decomposition and tensile mechanical properties was investigated. Moreover, the effect of γ‐irradiation on the dye affinity of PVB/PS and PVB/PEG for basic and acid dyestuffs was studied. The thermogravimetric analysis (TGA) study showed that the unirradiated PVB polymer films prepared in benzene displayed higher thermal stability than the same polymer films prepared in butanol. However, in all cases the thermal stability was found to increase with increasing γ‐irradiation dose. On the other hand, PVB/PS blend possesses higher thermal stability than PVB/PEG, as shown from the determination of the weight loss (%) at different heating temperatures, the temperatures of the maximum rate of reaction and the activation energy. While, pure PS films showed the stress‐strain behavior of brittle polymers, PVB/PS films showed the behavior of tough polymers with yielding properties. The results of dyeing clearly showed that the solvent type, blend composition, and irradiation dose are determining factors for the dye affinity for basic or acid dyes. For example, unirradiated PVB films prepared from butanol displayed a higher affinity for the basic and acid dyes than the same polymer prepared from the same benzene. However, PVB prepared from butanol showed higher affinity to the dyes than PS prepared from the same solvent. POLYM. COMPOS., 2008. © 2008 Society of Plastics Engineers  相似文献   

18.
CB‐containing HIPS/UHMWPE and HIPS/XL‐UHMWPE are unique systems, in which structuring takes place, affecting the electrical (to be described in a future article), rheological, mechanical, and dynamical‐mechanical properties. The XL‐UHMWPE particles have undergone structural fixation due to the crosslinking, maintaining their porosity and internal intricate structure even after high‐temperature melt processing, as opposed to the UHMWPE particles. Differences in the flow mechanisms of HIPS/UHMWPE and HIPS/XL‐UHMWPE blends have been attributed to polymer viscous flow in the former case vs. particle slippage in the latter. The mechanical properties of HIPS/UHMWPE are enhanced when utilizing XL‐UHMWPE as a dispersed phase, especially the strength, because of changes in the inherent properties of the UHMWPE following irradiation, and in particular, the nature of the HIPS/XL‐UHMWPE interface. The results for the CB‐containing 70HIPS/30XL‐UHMWPE blend are especially surprising and of practical importance, due to the fact that no degradation of the mechanical properties has occurred as a result of the CB incorporation. The dynamical mechanical properties reflect the differences between the UHMWPE and XL‐UHMWPE‐containing blends as well. The presence of either type of UHMWPE, CB content, and blend composition affect the dissipation, but have only a minor influence on the transition temperatures of the components. Of special interest is the increased damping of XL‐UHMWPE–containing compositions. © 1999 John Wiley & Sons, Inc. J Appl Polym Sci 74: 1731–1744, 1999  相似文献   

19.
Polymer–polymer materials consist of a thermoplastic matrix and a thermoplastic reinforcement. Recent research activities concentrate on the manufacturing of semi‐finished polymer–polymer materials in other shapes than the commercially available tapes and sheets. In particular, a pellet‐like form provides the possibility of processing the polymer–polymer material by injection and compression molding. Nevertheless, the thermoplastic reinforcement is vulnerable to excessive heat and the processing usually needs special attention. The current study investigates the processing of long‐polymer‐fiber reinforced thermoplastic pellets, namely polypropylene‐polyethylene terephthalate and a single‐polymer polyethylene terephthalate, by extrusion for subsequent compression molding applications. The flow characteristics of the material as well as the preservation of the polymer reinforcement can be handled by accurate temperature control. The tensile and impact properties decrease with increasing process temperature though. Moreover, the results prove that the use of a common long‐fiber reinforced thermoplastic process chain is applicable to the newly developed polymer–polymer material. © 2013 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2014 , 131, 39716.  相似文献   

20.
Two different methodologies (reactive blending and mechanical blending) for preparing blends of poly(β‐hydroxybutyrate‐co‐β‐hydroxyvalerate) (PHBV) and poly(propylene carbonate) (PPC) were used. The miscibility, chemical structure, thermal behavior, crystallinity, morphology, and mechanical properties of the blends were investigated with Fourier transform infrared spectroscopy, differential scanning calorimetry, polarized optical microscopy, scanning electron microscopy, and tensile tests. A certain extent of hydrogen‐bonding interactions between PHBV and PPC took place in the blends. The graft copolymerization was confirmed in the reactive system. The incorporation of PPC hampered the crystallization process of PHBV and evidently altered the morphology, and the effect was enhanced in the reactive blend. The mechanical properties of PHBV could be changed by 1–2 orders of magnitude by blending modification. © 2005 Wiley Periodicals, Inc. J Appl Polym Sci 98: 1427–1436, 2005  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号