首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
A series of pH‐thermoreversible hydrogels that exhibited volume phase transition was synthesized by various molar ratios of N‐isopropylacrylamide (NIPAAm), acrylamide (AAm), and 2‐hydroxyethyl methacrylate (HEMA). The influence of environmental conditions such as temperature and pH value on the swelling behavior of these copolymeric gels was investigated. Results showed that the hydrogels exhibited different equilibrium swelling ratios in different pH solutions. Amide groups could be hydrolyzed to form negatively charged carboxylate ion groups in their hydrophilic polymeric network in response to an external pH variation. The pH sensitivities of these gels also depended on the AAm content in the copolymeric gels; thus the greater the AAm content, the higher the pH sensitivity. These hydrogels, based on a temperature‐sensitive hydrogel, demonstrated a significant change of equilibrium swelling in aqueous media between a highly solvated, swollen gel state and a dehydrated network response to small variations of temperature. pH‐thermoreversible hydrogels were used for a study of the release of a model drug, caffeine, with changes in temperature. © 1999 John Wiley & Sons, Inc. J Appl Polym Sci 71: 221–231, 1999  相似文献   

2.
Biocompatible polymers with specific shape and tailored hydrogel properties were obtained by polymerization of mixtures of 2‐hydroxyethyl methacrylate (HEMA) with 1–8 wt % ethylene glycol dimethacrylate (EGDMA) or tetra(ethylene glycol) diacrylate (TEGDA) as crosslinking agents, by using a redox initiator. Introduction of charged positive and negative groups was easily achieved by direct polymerization of appropriate monomer mixtures and by chemical transformation of preformed hydrogels. Investigation of the swelling behavior of the prepared hydrogels evidenced an appreciable dependence on both solvent type and polymer chemical structure. Additionally, the solvation process resulted in being controlled by solvent diffusion, according to a Fickian II mechanism. The presence of several types of water with different melting behavior was observed in fully swollen hydrogels. © 2002 Wiley Periodicals, Inc. J Appl Polym Sci 85: 2729–2741, 2002  相似文献   

3.
Copolymers of 2‐hydroxyethyl methacrylate (HEMA) and N‐vinyl‐2‐pyrrolidone (VP) and homopolymers of HEMA and VP were crosslinked in the presence of different mol% of melamine trimethacrylamide (MMAm) and melamine triacrylamide (MAAm) as crosslinkers by bulk radical polymerization. The resultant xerogels were characterized by extracting the soluble fractions and measuring the equilibrium water content. Lower critical solution transition temperatures (LCST) were measured by DSC. The properties of crosslinked HEMA and VP copolymers, VP and HEMA series were evaluated in terms of compositional drift of polymerization, heterogeneous crosslinking, and chemical structure of the relevant components. Soluble fractions of the crosslinked networks were reduced by varying the MAAm and MMAm concentrations. The influence of environmental conditions such as temperature and pH on the swelling behavior of these polymeric gels was investigated. The swelling behaviors of the resulting gels show pH sensitivity. This behavior is explained on the basis that amide groups of VP or crosslinkers could be hydrolyzed to form negatively charged carboxylate ion groups in the produced networks in response to an external pH variation. Copyright © 2004 Society of Chemical Industry  相似文献   

4.
In this work, biocompatible hydrogel matrices for wound‐dressing materials and controlled drug‐release systems were prepared from poly[hydroxyethyl methacrylate‐co‐poly(ethylene glycol)–methacrylate] [p(HEMA‐co‐PEG–MA] films via UV‐initiated photopolymerization. The characterization of the hydrogels was conducted with swelling experiments, Fourier transform infrared spectroscopy, scanning electron microscopy, thermogravimetric analysis (differential scanning calorimetry), and contact‐angle studies. The water absorbency of the hydrogel films significantly changed with the change of the medium pH from 4.0 to 7.4. The thermal stability of the copolymer was lowered by an increase in the ratio of poly(ethylene glycol) (PEG) to methacrylate (MA) in the film structure. Contact‐angle measurements on the surface of the p(HEMA‐co‐PEG–MA) films demonstrated that the copolymer gave rise to a significant hydrophilic surface in comparison with the homopolymer of 2‐hydroxyethyl methacrylate (HEMA). The blood protein adsorption was significantly reduced on the surface of the copolymer hydrogels in comparison with the control homopolymer of HEMA. Model antibiotic (i.e., minocycline) release experiments were performed in physiological buffer saline solutions with a continuous flow release system. The amount of minocycline release was shown to be dependent on the HEMA/PEG–MA ratio. The hydrogels have good antifouling properties and therefore are suitable candidates for wound dressing and other tissue engineering applications. © 2009 Wiley Periodicals, Inc. J Appl Polym Sci, 2009  相似文献   

5.
pH‐sensitive poly(N,N‐dimethylaminoethyl methacrylate) hydrogels were synthesized by free‐radical crosslinking polymerization using two different crosslinking agents; tetraethylene glycol dimethacrylate (TEGMA) and N,N′‐methylenebis(acrylamide) (BAAm). The influence of the polymerization factors such as the type of the crosslinking agent and the gel preparation concentration on the swelling behavior, the gel strength, the effective crosslinking density and the average chain length between the crosslink points for the resulting hydrogels was investigated. The results of the equilibrium swelling measurements in water showed that the linear swelling ratio of the resulting hydrogels increases with increasing gel preparation concentration. The swelling ratio of PDMAEMA hydrogels crosslinked with BAAm is larger than those for hydrogels crosslinked with TEGMA over the entire range of the polymer network concentration. The hydrogels exhibit very sharp pH‐sensitive phase transition in a very narrow range of pH between 7.7 and 8.0. From the mechanical measurements, it was also found that the linear swelling ratio of resulting hydrogels depends on the crosslinking density and also the type of the crosslinker used in the preparation. The resulting hydrogels are thought to be good candidates for pH‐sensitive drug delivery systems. POLYM. ENG. SCI. 2013. © 2012 Society of Plastics Engineers  相似文献   

6.
A series of 2‐hydroxyethyl methacrylate (HEMA) and sodium acrylate (SA50) copolymeric gels were prepared from HEMA and the anionic monomer SA50 with various molar ratios. The influence of SA50 on the copolymeric gels on their swelling behavior in deionized water at different temperatures and various pH buffer solutions was investigated. Results indicated that the poly(2‐hydroxyethyl methacrylate) (PHEMA) hydrogels exhibited an overshooting phenomenon in their dynamic swelling behavior. The maximum overshooting value decreased with increasing of the temperature. The same results were also found in the HEMA/SA50 copolymeric gels with a lower SA50 content. On the contrary, the overshooting phenomenon for HEMA/SA50 copolymeric gels with a higher content of SA50 was exhibited only under higher temperature (over 35°C). These copolymer gels were used to assess drug release and drug delivery in this article. © 2001 John Wiley & Sons, Inc. J Appl Polym Sci 81: 1360–1371, 2001  相似文献   

7.
A series of 2‐hydroxyethyl methacrylate/1‐vinyl‐3‐(3‐sulfopropyl)imidazolium betaine (HEMA/VSIB) copolymeric gels were prepared from various molar ratios of HEMA and the zwitterionic monomer VSIB. The influence of the amount of VSIB in copolymeric gels on their swelling behavior in water and various saline solutions at different temperatures and the drug‐release behavior, compression strength, and crosslinking density were investigated. Experimental results indicated that the PHEMA hydrogel and the lower VSIB content (3%) in the HEMA/VSIB gel exhibited an overshooting phenomenon in their dynamic swelling behavior, and the overshooting ratio decreased with increase of the temperature. In the equilibrium water content, the value increased with increase of the VSIB content in HEMA/VSIB hydrogels. In the saline solution, the water content for these gels was not affected by the ion concentration when the salt concentration was lower than the minimum salt concentration (MSC) of poly(VSIB). When the salt concentration was higher than the MSC of poly(VSIB), the deswelling behavior of the copolymeric gel was more effectively suppressed as more VSIB was added to the copolymeric gels. However, the swelling behavior of gels in KI, KBr, NaClO4, and NaNO3 solutions at a higher concentration would cause an antipolyelectrolyte phenomenon. Besides, the anion effects were larger than were the cation effects in the presence of a common anion (Cl?) with different cations and a common cation (K+) with different anions for the hydrogel. In drug‐release behavior, the addition of VSIB increased the drug‐release ratio and the release rate. Finally, the addition of VSIB in the hydrogel improved the gel strength and crosslinking density of the gel. © 2001 John Wiley & Sons, Inc. J Appl Polym Sci 81: 2888–2900, 2001  相似文献   

8.
Stimuli‐responsive hydrogels prepared from poly(N,N‐dimethylaminoethyl methacrylate) (PDMAEMA) and its copolymers have attracted much interest to serve in biomedical and pharmaceutical applications. To investigate pH‐dependent swelling and elasticity, a series of cationic hydrogels based on N,N‐dimethylaminoethyl methacrylate were prepared by free radical crosslinking copolymerization at 60 °C in the presence of tetraethylene glycol dimethacrylate as the crosslinker. The equilibrium swelling and the mechanical properties of the PDMAEMA hydrogels were investigated as a function of the gel preparation concentration. To explain the effect of pH on the equilibrium swelling of the hydrogels, pH‐dependent swelling studies were carried out in solutions of pH ranging from 2.1 to 10.7. It was found that the PDMAEMA hydrogels exhibit a rapid pH‐dependent phase transition in aqueous solutions; that is, the gels first remain in the swollen state at acidic pH then collapse in a very narrow range of pH. The results showed that the volume of PDMAEMA hydrogels in acidic conditions is about 10‐ to 40‐fold larger than that in the basic pH region. By using the Flory–Rehner theory, the characteristic network parameters of the PDMAEMA hydrogels were calculated and good agreement obtained between the swelling equilibria of hydrogels and their mechanical properties over the whole range of gel preparation concentration. © 2012 Society of Chemical Industry  相似文献   

9.
A novel poly(ethylene glycol) (PEG) macromer with a methacryloyl and sulfonic acid group at each end of the chain was prepared. Modified hydroxyethyl methacrylate (HEMA) based hydrogels were synthesized by crosslinking polymerization of HEMA in the presence of the above‐mentioned PEG macromer. The effect of the sulfonated PEG graft was examined by comparing the swelling properties with those of a pure poly(hydroxyethyl methacrylate) (PHEMA) hydrogel. The modified PHEMA hydrogel exhibited increasing water absorbency with increasing sulfonated PEG content up to 15 wt %. These hydrogels with the sulfonated PEG graft exhibited a more hydrophilic character than the pure PHEMA gel. Also the swelling degree varied slightly with pH, showing increased swelling at higher pH probably due to the presence of the anionic sulfonate group on the PEG end chain. In addition, the protein adsorption test showed a lower level of fibrinogen adsorption from the sulfonated poly(ethylene glycol) (SPEG) modified gel than on the homo PHEMA hydrogel. Interestingly, scanning electron microscopy showed that the porous and rather uniform morphology of the gels changed with increasing sulfonated PEG content in PHEMA. © 2007 Wiley Periodicals, Inc. J Appl Polym Sci 104: 2484–2489, 2007  相似文献   

10.
In this study, we have synthesized dextran hydrogels by the crosslinking reactions of dextran with some selective Cl‐, and N‐containing functional monomers, such as epichlorohydrin (ECH), N,N′‐methylenebisacrylamide (MBAm), and glutaraldehyde (GA). Crosslinking reactions were carried out in the basic aqueous solutions (2.8NNaOH) at 25–50°C. The optimum conditions for effective crosslinking, i.e., temperature, crosslinking time, and amount of crosslinker, were determined for each system. The hydrogel discs of 3 mm diameter and 1.5 mm thickness were subjected to a number of Tris‐buffer solutions of desired pH (2.0–9.0) at 37°C. Swelling kinetics of the hydrogels were evaluated with second–order swelling model. The pH‐dependent swelling of hydrogels was strongly influenced by the functional group of crosslinker and crosslinker content. While the hydrogels prepared with ECH and MBAm shows higher swelling ability at basic medium than that of acidic medium, GA‐containing hydrogels exhibited just the opposite behavior. Mesh sizes (ξ) and average molecular weights between crosslinks (Mc) were estimated from swelling data using the Flory‐Rehner theory. Characterization studies were completed by Fourier transform infrared spectroscopy and thermal gravimetric analysis. © 2006 Wiley Periodicals, Inc. J Appl Polym Sci 102:4213–4221, 2006  相似文献   

11.
In this study, a new cationic monomer 2‐(3‐indol‐yl)ethylmethacrylamide (IEMA) derived from tryptamine was synthesized in a single step and characterized by Fourier transform infrared (FTIR), 1H‐NMR, and 13C‐NMR. Then, one‐step preparation of novel poly[2‐hydroxyethylmethacrylate‐c‐2‐(3‐indol‐yl)ethylmethacrylamide], or p(HEMA‐c‐IEMA), copolymeric hydrogels has been performed successfully with IEMA and 2‐hydroxyethylmethacrylate (HEMA) as monomers using free radical aqueous polymerization. The hydrogels were characterized with scanning electron microscopy, FTIR, elemental analysis, thermogravimetric analysis, and texture profile analysis instruments. p(HEMA‐c‐IEMA) hydrogels were used for swelling, diffusion, drug release, and antibacterial activity studies. The drug‐release behavior of the hydrogels was determined as a function of time at 37 °C in pH 1.2 and 7.2. The swelling and drug‐release studies showed that an increased IEMA amount caused a higher increase in swelling and drug‐release values. Additionally, zero‐order, first‐order, and Higuchi equation kinetic models were applied to the drug‐release data, and the data fit well in the Higuchi model, and the Peppas power‐law model was applied to the release mechanism. Finally, the antibacterial activities of the hydrogels were screened against Gram‐positive bacteria (Bacillus cereus and Staphylococcus aureus) and Gram‐negative bacteria (Escherichia coli and Salmonella typhimurium). © 2017 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2017 , 134, 45550.  相似文献   

12.
Radiation‐crosslinked 2‐hydroxyethylmethacrylate/citric acid (HEMA/CAc), 2‐hydroxyethylmethacrylate/tartaric acid (HEMA/TA), and 2‐hydroxyethylmethacrylate/succinic acid (HEMA/Sc) copolymers were prepared by using 60Co γ‐rays. The gel fraction yield and the swelling behavior of the prepared hydrogels were studied. It was shown that increasing irradiation doses was accompanied by an increase in yield of gel fraction and a decrease in swelling degree. The parameters of equilibrium swelling, maximum swelling, initial swelling rate, swelling exponent, and diffusion coefficient of the hydrogels were determined by studying the swelling behavior of the hydrogels prepared. It was seen that the equilibrium swelling degree increases as the content of acid increases, as a result of introducing more hydrophilic groups. When the hydrophilic polymer (acids) varies in the content range of 40–80 mg, swelling exponents (n) decreases, thereby indicating a shift in the water‐transport mechanism from the anomalous (non‐Fickian)‐type to the Fickian‐type. Characterization and some selected properties of the prepared hydrogels were studied, and accordingly the possibility of its practical use in the treatment of industrial wastes such as dyes and heavy metals (Fe, Ni, Co, and Cu) were also studied. The effect of treatment time, pH of feed solution, initial feed concentration, and temperature on the dye and heavy metals uptake was determined. The uptake order for a given metal was HEMA/TA hydrogel > HEMA/CAc > HEMA/Sc hydrogel. © 2007 Wiley Periodicals, Inc. J Appl Polym Sci, 2008  相似文献   

13.
To enhance the solubility and ocular permeability of immunosuppressive agent, cyclosporine A (CsA), three types of delivery systems were prepared using (2‐hydroxypropyl)‐β‐cyclodextrin (HPβCD), and 2‐hydroxyethyl methacrylate (HEMA). Those systems are (i) hydrogels of HPβCD with crosslinking agent ethylene glycol diglycidylether, (ii) poly(HEMA) hydrogels, and (iii) different amounts of HPβCD‐containing poly(HEMA) hydrogels indicated as poly(HEMA‐co‐HPβCD). In the presence of HEMA, hydrogels have desired mechanical integrity with lower equilibrium content than that of hydrogels without HEMA. CsA was loaded into the HPβCD‐based hydrogels by embedding from its aqueous suspensions in higher amounts than that of the poly(HEMA) hydrogels that were loaded by CsA–HPβCD complex solution. Although the poly(HEMA) hydrogels are releasing total CsA in 3 days, long‐term release was realized from HPβCD‐based hydrogels. For subconjunctival administration, regarding to the amounts of loaded CsA, release profiles, and mechanical integrity, the most suitable system is poly(HEMA‐co‐HPβCD) hydrogels in high HPβCD content. © 2014 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2014 , 131, 40397.  相似文献   

14.
Hydrophobically modified poly[2‐(diethylamino)ethylmethacrylate‐co‐N‐vinyl‐2‐pyrrolidone/octadecyl acrylate) [P(DEAEMA‐co‐NVP/OA)] hydrogels were synthesized by free‐radical crosslinking copolymerization of 2‐(diethylamino)ethylmethacrylate (DEAEMA), N‐vinyl‐2‐pyrrolidone (NVP) with different amounts of hydrophobic comonomer octadecyl acrylate (OA) in tert‐butanol with ethylene glycole dimethacrylate (EGDMA) as a crosslinker. The swelling equilibrium of the hydrogels was investigated as a function of temperature and hydrophobic comonomer content in aqueous solutions of the anionic surfactant sodium dodecyl sulfate (SDS) and the cationic surfactant dodecyltrimethylammonium bromide (DTAB). The results indicated that the swelling behavior and temperature sensitivity of the hydrogels were affected by the type and concentration of surfactant solutions. Additionally, the amount of the adsorbed SDS and DTAB molecules onto the hydrogels was determined by fluorescence measurements. An increase of OA content in the hydrogel caused an increase in the amount of adsorbed surfactant molecules in both media. © 2006 Wiley Periodicals, Inc. J Appl Polym Sci 103: 3771–3775, 2007  相似文献   

15.
Interpenetrating polymer network (IPN) hydrogels based on poly(vinyl alcohol) (PVA) and poly(acrylamide‐co‐sodium methacrylate) poly(AAm‐co‐SMA) were prepared by the semi IPN method. These IPN hydrogels were prepared by polymerizing aqueous solution of acrylamide and sodium methacrylate, using ammonium persulphate/N,N,N1,N1‐tetramethylethylenediamine (APS/TMEDA) initiating system and N,N1‐methylene‐bisacrylamide (MBA) as a crosslinker in the presence of a host polymer, poly(vinyl alcohol). The influence of reaction conditions, such as the concentration of PVA, sodium methacrylate, crosslinker, initiator, and reaction temperature, on the swelling behavior of these IPNs was investigated in detail. The results showed that the IPN hydrogels exhibited different swelling behavior as the reaction conditions varied. To verify the structural difference in the IPN hydrogels, scanning electron microscopy (SEM) was used to identify the morphological changes in the IPN as the concentration of crosslinker varied. In addition to MBA, two other crosslinkers were also employed in the preparation of IPNs to illustrate the difference in their swelling phenomena. The swelling kinetics, equilibrium water content, and water transport mechanism of all the IPN hydrogels were investigated. IPN hydrogels being ionic in nature, the swelling behavior was significantly affected by environmental conditions, such as temperature, ionic strength, and pH of the swelling medium. Further, their swelling behavior was also examined in different physiological bio‐fluids. © 2005 Wiley Periodicals, Inc. J Appl Polym Sci 98: 302–314, 2005  相似文献   

16.
A novel amphiphilic hydrogel based on poly(2‐methyl‐2‐oxazoline)‐b‐poly(dimethyl siloxane) (PMeOx–PDMS) block copolymer was developed. First of all, PMeOx–PDMS macromonomer was synthesized by coupling mono‐hydroxylated PMeOx with PDMS followed by end‐capping with methacrylate group. The structures of each step were characterized by NMR and titration. After that, silicone hydrogels were prepared by UV‐initiated copolymerization of PMeOx–PDMS macromonomer with monomers such as 2‐hydroxyethyl methacrylate in the presence of a crosslinker. Measurements of the hydrogels' water contact angle, equilibrium water content, and tensile properties showed that the hydrogels possessed better hydrophilic surface, higher water content, and better ion permeability with the increase of the content of the macromonomer PMeOx–PDMS. Meanwhile, the tensile strength and Young's modulus of the hydrogels decreased slightly. Protein adsorption tests showed that the hydrogels had strong antifouling ability after the incorporation of PMeOx. This newly described hydrogel demonstrated attractive properties to serve as ophthalmic biomaterial. © 2013 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2014 , 131, 39867.  相似文献   

17.
Macroporous temperature‐sensitive poly {N‐[3‐(dimethylaminopropyl)] methacrylamide} hydrogels were synthesized by free‐radical crosslinking polymerization of the monomer N‐[3‐(dimethylaminopropyl)] methacrylamide and the crosslinker N,N′‐methylenebisacrylamide in aqueous solutions at 22°C. Poly(ethylene glycol) (PEG) with a molecular weight of 1000 g/mol was used as the pore‐forming agent during the polymerization reaction. The concentration of PEG in the polymerization solutions was varied between 0 and 18 wt %, whereas the crosslinker (N,N′‐methylenebisacrylamide) concentration was fixed at 2 wt % (with respect to the monomer). The effects of the PEG concentration on the thermo‐induced phase‐transition behavior and the chemical structure, interior morphology, and swelling/deswelling kinetics were investigated. Normal‐type hydrogels were also prepared under the same conditions without PEG. An interesting feature of the swelling behavior of both the normal‐type and macroporous hydrogels was the reentrant phase transition, in which the hydrogels collapsed once and reswelled as the temperature was continuously increased. Scanning electron micrographs revealed that the interior network structure of the hydrogels prepared in PEG solutions became more porous with an increase in the PEG concentration in the polymerization solution. This more porous matrix provided numerous water channels for water diffusion in or out of the matrix and, therefore, an improved responsive rate to external temperature changes during the deswelling and swelling processes. © 2009 Wiley Periodicals, Inc. J Appl Polym Sci, 2009  相似文献   

18.
pH‐ and temperature‐responsive interpenetrating polymer network (IPN) hydrogels based on soy protein and poly(N‐isopropylacrylamide‐co‐sodium acrylate) were successfully prepared. The structure and properties of the hydrogels were characterized by Fourier transform infrared spectroscopy, scanning electron microscopy, differential scanning calorimetry, and thermogravimetric analyzer. The equilibrium and dynamic swelling/deswelling behaviors and the drug release properties of the hydrogels responding to pH and/or temperature were also studied in detail. The hydrogels have the porous honeycomb structures, good miscibility and thermal stability, and good pH‐ and temperature‐responsivity. The volume phase transition temperature of the hydrogels is ca. 40°C. Changing the soy protein or crosslinker content could be used to control the swelling behavior and water retention, and the hydrogels have the fastest deswelling rate in pH 1.2 buffer solutions at 45°C. Bovine serum albumin release from the hydrogels has the good pH and temperature dependence. The results show that the proposed IPN hydrogels may have potential applications in the field of biomedical materials such as in drug delivery systems. © 2013 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2014 , 131, 39781.  相似文献   

19.
This study presents the synthesis of a crosslinkable dextran as starting material for the development of new hydrogels as drug delivery system in dental applications. 2‐Hydroxyethyl methacrylate (HEMA) was coupled to dextran after activation with carbonyldiimidazole as monitored by FTIR and 1H‐NMR spectroscopy. The Dex‐HEMA was crosslinked by visible light in the presence of camphorquinone (CQ) as photoinitiator and a coinitiator in a proper solvent. Aliphatic or aromatic amines were used as coinitiators and the content of the coinitiator was varied from 0.25 to 3.0 mol %. Diphenyliodonium chloride was added as a third component to the above photoinitiation system. It was observed that, the degree of swelling decreased upon an increase of Dex‐HEMA concentration and the water content in the solvent system due to formation of more crosslinking points, that is, increasing crosslink density (Px). The type of coinitiator shows a prominent impact on the swelling behavior and crosslinking efficiency of hydrogels. Special cryofixation and cryofracture techniques were used to investigate the surface and interior of swollen Dex‐HEMA hydrogel samples by SEM. © 2010 Wiley Periodicals, Inc. J Appl Polym Sci, 2010  相似文献   

20.
Polyurethane (PU)/poly[2‐(diethylamino)ethyl methacrylate] hybrids, having a chemical bond between the PU and acrylic moieties and with different compositions, were prepared by the dispersion polymerization of 2‐(diethylamino)ethyl methacrylate (DEA) in the presence of preformed PU chains with polymerizable terminal vinyl groups. The PU dispersion was synthesized according to a prepolymer mixing process by the polyaddition of isophorone diisocyanate, poly(propylene glycol), 2‐hydroxyethyl methacrylate, and dimethylol propionic acid (DMPA). Then, it was dispersed in water by the prior neutralization of the carboxylic acid groups of DMPA with triethylamine, chain‐extended with ethylenediamine. The effect of the DEA content on the swelling properties (water uptake and dynamic swelling degree) at different pHs and at 37°C was determined. The samples were also characterized by Fourier transform infrared spectroscopy and modulated differential scanning calorimetry. The experimental results indicate a higher water uptake when the DEA content was increased on the hybrid materials and a significant change in the kinetics of swelling at pH 4 compared to those at pH 7. The water content of the hydrogels depended on the DEA content, and it was inversely proportional to the pH value. The pure PU film did not show important changes over the pH range examined in this study. The synthesized hybrids were useful as drug‐delivery, pH‐sensitive matrices. © 2013 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2014 , 131, 39799.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号