首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
多孔石墨烯材料结合了多孔材料与石墨烯的优点,因其比表面积大、孔结构独特、组成多样、导电性能优异等特点,逐渐成为了石墨烯材料领域的研究热点。因此,为了实现大规模合成高性能的多孔石墨烯材料,本文阐述了多孔石墨烯的制备原理并对多孔石墨烯材料的典型制备方法进行了总结,讨论了各种制备方法存在的优缺点,以及多孔石墨烯材料具备的优势与不足。基于现有的多孔石墨烯制备技术以及对未来发展需求的展望,多孔石墨烯材料的制备及调控将达到分子水平,并且将展现更加巨大的应用潜力。  相似文献   

2.
石墨烯气凝胶是由石墨烯片层经过相互搭接、组装而成的三维多孔网络结构,具有高电导率、高比表面积、高孔隙率、较高柔韧性和弹性及低密度等特点,在海水表面吸附油污、机械减震、杂质过滤等领域获得了应用。综述了石墨烯气凝胶的主要制备方法,包括自组装法、化学交联法、模板法、3D打印法等,并重点阐述了石墨烯气凝胶在新能源二次电池领域如锂离子电池、锂/硫电池、钠离子电池中的应用研究进展,为探索石墨烯气凝胶的新型制备方法及电池应用提供借鉴。  相似文献   

3.
利用溶剂热法制备多孔石墨烯,然后超声处理将酞菁铁修饰在多孔石墨烯表面,制备出多孔石墨烯基酞菁铁复合物用于碱性介质氧还原。利用循环伏安法和线性扫描伏安法考察该复合物的催化氧还原的能力,结果显示:多孔石墨烯基酞菁铁复合物修饰电极比多孔石墨烯修饰电极表现出更正的还原电位,具有更高的催化活性。  相似文献   

4.
石墨烯气凝胶(GA)是由二维石墨烯构建形成的、具有互联多孔网络结构的三维宏观体材料,在能量存储、环保、催化和抗电磁干扰等领域具有广阔的应用前景。GA的性能和结构因制备方法不同差异较大,综述了原位组装、模板法、化学交联和3D打印技术制备GA的特点和研究现状,总结了其在不同领域的应用前景。进一步提高GA的性能、实现GA材料的可控设计、降低制备成本、开发出易于大规模操作的制备方法仍是一个重要研究方向。  相似文献   

5.
石墨烯气凝胶(GA)是由二维石墨烯构建形成的、具有互联多孔网络结构的三维宏观体材料,在能量存储、环保、催化和抗电磁干扰等领域具有广阔的应用前景。GA的性能和结构因制备方法不同差异较大,综述了原位组装、模板法、化学交联和3D打印技术制备GA的特点和研究现状,总结了其在不同领域的应用前景。进一步提高GA的性能、实现GA材料的可控设计、降低制备成本、开发出易于大规模操作的制备方法仍是一个重要研究方向。  相似文献   

6.
本文介绍了三维石墨烯的制备方法,比较了不同制备方法的特点,分析了三维石墨烯制备的自组装法、模板法和3D打印方法的特点及应用。综述了三维石墨烯在气敏传感,压力传感,环境修复及气体吸附,催化剂,磁电器件制备,储能和超级电容制备等方面的性能和应用,并对三维石墨烯制备方面的结构优化、性能优化、应用拓展等方面进行了展望。  相似文献   

7.
石墨烯以其优异的物理化学性质而被广泛应用。然而,石墨烯层间强劲的π-π相互作用和堆积问题导致其优异性能得不到充分发挥。针对以上问题,开发由石墨烯片组装形成的三维石墨烯结构是一种行之有效的策略。综述了不同的制备三维石墨烯材料的方法,包括自组装法、模板法以及3D打印法等。总结了以上各方法的优点及其存在的不足,并对未来三维石墨烯材料制备方法的研究进行了讨论。  相似文献   

8.
正中科院近代物理所材料研究中心研究人员在聚合物纳米孔研究基础上,发明了一种快速制备具有微孔支撑的大面积多孔石墨烯的新方法,解决了当前多孔石墨烯研究中的瓶颈问题。科研人员把大面积石墨烯转移至PET膜上形成G/PET复合结构,然后利用兰州重离子加速器提供的高能重离子对G/PET复合结构进行辐照,形成石墨烯纳米孔并在PET中形成潜径迹;再利用非对称蚀法在PET中制备出锥形孔并形成具有微孔支撑的石墨烯纳米孔。该方法充分发挥了兰州重离子加速器离子能量高、穿透能力强的特点,可方便、快速地制备出具有微孔支撑  相似文献   

9.
利用改进的Hummers方法经冷冻干燥制备氧化石墨(GO),通过温和磁力搅拌、普通超声和大功率超声3种剥离方式,经一步水热法合成了3D掺氮石墨烯。通过FT-IR、XRD、FESEM、EDS、Raman、XPS、TGA、AFM对样品的微观形貌和结构进行表征。结果表明,通过不同的剥离方式可以得到不同形貌、不同尺寸、不同厚度、不同掺氮含量的掺氮石墨烯。温和磁力搅拌不会对片层结构有较大破坏,可制备微米级大尺寸掺氮石墨烯,厚度约为1.1 nm。在普通超声下,掺氮石墨烯片层开始产生孔状结构,厚度约为0.8 nm。在大功率超声波的空化效应作用下,片层剥离程度较普通超声更为明显,更易形成较小尺寸的3D多孔网络结构,厚度约为0.6 nm。  相似文献   

10.
本期导读     
正石墨烯气凝胶是一种在石墨烯基础上开发的多孔纳米材料,其高比表面积、高孔隙率、低密度、低导热系数、强吸附性、良好的热稳定性及结构可控性等特性,使得其在吸附、储能、催化、电化学等领域具有广阔的应用前景。"石墨烯气凝胶的结构控制及其电化学性能"一文通过Hummer法制备了氧化石墨烯,然后采用水热法制备石墨烯气凝胶,对水热条件(氧化石墨烯质量浓度、水热反应时间等)进行了考察;将制备的气凝胶用作锂离子电池的负  相似文献   

11.
石墨烯作为一类新型纳米材料,具有对水中各类污染物良好的吸附去除性能,但石墨烯纳米粉末态的性状使其在使用后难以从溶液中分离出来而造成二次污染。因此构建大体积的三维石墨烯结构,可以有效弥补水处理中纳米材料难以分离的问题。本文介绍了如今常用的三维结构制备方法,如模板法、自组装法等,但这些方法通常步骤烦琐、影响因素及所需条件较多等,在过程中易产生结构缺陷,从而影响制得的三维结构的力学性能。文中指出,3D打印法通过计算机数据调控,具有操作简便、结构设计精准、批量制备的优点,可制备出优良的三维结构体,并可通过对浆料组分的灵活调控进行改性或增加其力学性能。综上所述,配置满足3D打印黏度要求的浆料,并使制得的三维结构具备一定要求的力学性能,充分利用其精密的规模化生产,是使3D打印三维石墨烯适用于水处理的关键所在。  相似文献   

12.
能源消费增加促使绿色能源开发成为趋势,同时推动能源存储系统快速发展,超级电容器以高功率密度和长循环寿命的优势得到广泛关注,其中电容炭材料逐渐成为研究热点。用来源广泛、有可再生性、价格低廉、绿色环保的生物质制备超级电容器用多孔炭材料,在开发绿色能源的同时解决了能源存储问题。多孔炭材料结构调控与性能完善是提高超级电容器性能的重要途径之一。综述了生物质衍生多孔炭材料及其在超级电容器领域的应用,按原料来源(植物、动物和微生物)及材料维度(0D、1D、2D和3D)的分类体系,多孔炭材料制备方法及技术现状。将多孔炭的制备分为炭化和活化,简述了炭化与活化机理、活化方式选择和常见活化剂特性,但生物质衍生多孔炭材料制备过程中影响因素多,且性能不及传统煤基碳材料,需进行多方面设计优化,包括选择生物质前驱体、合理使用炭化技术、调控活化过程各影响因素和选择改性过程中掺杂物等。基于在超级电容器领域的应用需求,重点探讨生物质多孔炭材料优化方式,包括孔结构调控、表面元素掺杂及与石墨烯复合形成新型炭材料等。梳理多孔炭材料用于超级电容器中时的难题与重点,通过寻找多孔炭材料在高比表面积、均匀孔隙分布和高导电性3方面的最优...  相似文献   

13.
以三维多孔氧化铝陶瓷块体为载体,首先通过溶液浸渍法制备了负载有镍离子的三维多孔陶瓷催化剂块体,采用还原气氛将催化剂块体中的镍离子盐还原成镍颗粒,以还原后的镍颗粒为催化剂,在含碳气体中,通过化学气相沉积法在三维多孔氧化铝陶瓷骨架表面制得了三维多孔氧化铝陶瓷-石墨烯块体复合材料。通过扫描电子显微镜,拉曼光谱对制得的三维多孔氧化铝陶瓷-石墨烯块体复合材料进行了表征,结果表明在三维多孔氧化铝陶瓷骨架表面包括外表面和骨架内部孔隙表面均生长了石墨烯,石墨烯为少层或寡层。  相似文献   

14.
碳材料作为丁烷氧化脱氢催化剂具有活性高、氧化深度可控的优点,具有高比表面积、丰富缺陷结构的多孔石墨烯是碳材料催化剂的理想选择。本文首次将化学气相沉积(CVD)法制备的多孔石墨烯作为催化剂应用于正丁烷氧化脱氢反应过程中。结果表明,多孔石墨烯对正丁烷氧化脱氢反应表现出显著催化活性,相对于碳纳米管,采用多孔石墨烯作为催化剂得到了更高的正丁烷转化率与C4烯烃选择性。当反应温度小于550℃时,C_4烯烃的选择性较高(40%);在550℃时,C4烯烃的收率达到最大值21.1%。在7.5 h的稳定性考察中,多孔石墨烯保持了良好的催化稳定性。反应后多孔石墨烯的表面缺陷度及C=O含量下降,这说明多孔石墨烯表面的C=O键是催化正丁烷氧化脱氢反应的活性中心。  相似文献   

15.
以氧化锆粉为主要原料,采用基于螺杆挤出的熔融沉积法在4种打印路径(单线、网格、单线+矩形、网格+矩形)下3D打印制备了孔隙率均分别为15%、25%、35%、45%的多孔氧化锆陶瓷。对多孔陶瓷的孔壁、打印层间结合、孔结构等进行了显微结构分析,并检测压缩强度。结果表明:1)采用熔融沉积法可以3D打印制备孔壁结构致密、孔形状保持良好的多孔陶瓷;2)低孔隙率时,多孔氧化锆陶瓷的应力-应变曲线呈弹性阶段,无坍塌阶段,随着孔隙率升高,出现明显的坍塌阶段;3)在相同孔隙率下,混合路径制备的多孔陶瓷的压缩强度比单一路径的更高,当孔隙率为15%时,单线+矩形路径打印的多孔陶瓷的压缩强度最高,达到271 MPa。  相似文献   

16.
石墨烯是由单层碳原子紧密堆叠而成的蜂窝状材料,具有比表面积大、传热性能好、导电能力强等优点,普遍应用于各个领域。但由于石墨烯使用过程中易团聚,导致其应用领域受限。石墨烯组装而成的3D石墨烯拥有更大的活性表面积等特性,近年来引发密切关注。与此同时,石墨烯、3D石墨烯改性成为当前探究的焦点。本文在介绍石墨烯、3D石墨烯的结构、性能及石墨烯制备的基础上,总结了3种复合材料的主要制备途径,并且分析了其合成方法的利弊。重点探讨了它们在锂离子电池、燃料电池的电化学催化剂及传感器中的应用,简述了复合材料优良性能产生的机理。提出在掺杂改性中应注意各元素掺杂量、掺杂比例、掺杂位点的确定等问题。最后指出了石墨烯、3D石墨烯及其复合材料的制备还面临不稳定、无法大规模生产、导电率低的瓶颈并对其在固态金属锂电池、透明电池、吸附材料等领域的发展前景做了展望。  相似文献   

17.
碳化硅(SiC)多孔陶瓷作为一种重要的结构材料,具有高熔点、高强度、比表面积大、体积密度小、热膨胀系数小以及良好的化学稳定性等优点,被广泛应用于催化剂载体、气/液过滤装置、生物医学材料、保温材料和耐火材料等领域。SiC多孔陶瓷的微观结构、性能及服役寿命等均受其制备方法的影响,因此综述了近年来国内外在SiC多孔陶瓷制备方法方面的研究进展,总结了物理成孔法(包括颗粒堆积法、冷冻干燥法及3D打印法等)和化学成孔法(包括添加造孔剂法、有机泡沫浸渍法与生物模板法等)制备SiC多孔陶瓷的优缺点,并对其发展方向和重点进行了展望。  相似文献   

18.
石墨烯是一种具有二维平面结构的碳纳米材料,特殊的结构决定了它具有许多优异的物化性能。近年来,人们在以石墨为原料制备石墨烯方面取得了积极的进展,为石墨烯的基础研究和下游应用开发提供了原料保障。以石墨为原料制备石墨烯是最为经济简单的方法。本文对近3年来以石墨为原料制备石墨烯的6种方法(化学氧化-还原法、溶剂热法、液相剥离法、电化学剥离法、球磨法以及超临界流体剥离法)作了综述并讨论了各方法的优缺点。  相似文献   

19.
分析了近年来超级电容器电极材料尤其是3D石墨烯/导电聚合物气凝胶复合电极材料在超级电容器方面的研究进展,详细介绍了目前3D石墨烯气凝胶的制备方法,总结了3D石墨烯/导电聚合物气凝胶复合材料的不足和在存储领域的发展方向.  相似文献   

20.
以改进的Hummers法合成的氧化石墨烯为自组装原料,通过微波加热的方式制备三维多孔石墨烯材料。并采用场发射扫描电子显微镜、傅立叶红外光谱仪、X射线衍射仪对石墨、氧化石墨烯、三维多孔石墨的微观形貌和内部结构进行表征分析。以亚甲基蓝为吸附质、三维多孔石墨烯为吸附剂,研究其吸附性能。结果表明,三维多孔石墨烯材料的最大吸附量为18.0 mg·g^(-1),去除率94.63%。通过对其动力学和热力学分析可知,三维多孔石墨烯对亚甲基蓝的吸附行为适合用Langmuir模型和二级动力学模型来描述。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号