首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Photoelastic fringes were directly measured to fully characterize high magnitude, steep compressive stress gradients in an ion-exchanged glass, trade named Ion-Armor™. Initially, using a thick (9.9 mm) rectangular bar and circular polariscope arrangement the overall residual stress profile in a bulk specimen was determined. However, due to the relatively large thickness of the specimen, the high density of fringes (steep stress gradient) close to the edge of the specimen became too diffused to allow an accurate count of fringe order. A thinner (0.71 mm) specimen was then used along with a polarizing light microscope to enhance the fringe contrast. This arrangement yielded approximately four isochromatic fringes, representing a maximum surface compressive stress of 984 MPa, which rapidly decreased to ~300 MPa within 25 μm depth from the strengthened surface. Also, the case-depth of the ion-exchange process was found to be 0.8 mm. Thus, the technique was able to directly capture the extremely high residual compressive stresses generated in an ion-exchanged glass. The current technique utilized for residual stress measurement is more objective and straightforward to implement than what is specified in ASTM standard C-1422, particularly for those specimens having steep stress gradients just below the strengthened surface.  相似文献   

2.
The successful fabrication of hydroxyapatite‐bioactive glass scaffolds using honeycomb extrusion is presented herein. Hydroxyapatite was combined with either 10 wt% stoichiometric Bioglass® (BG1), calcium‐excess Bioglass® (BG2) or canasite (CAN). For all composite materials, glass‐induced partial phase transformation of the HA into the mechanically weaker β‐tricalcium phosphate (TCP) occurred but XRD data demonstrated that BG2 exhibited a lower volume fraction of TCP than BG1. Consequently, the maximum compressive strength observed for BG1 and BG2 were 30.3 ± 3.9 and 56.7 ± 6.9 MPa, respectively, for specimens sintered at 1300°C. CAN scaffolds, in contrast, collapsed when handled when sintered below 1300°C, and thus failed. The microstructure illustrated a morphology similar to that of BG1 sintered at 1200°C, and hence a comparable compressive strength (11.4 ± 3.1 MPa). The results highlight the great potential offered by honeycomb extrusion for fabricating high‐strength porous scaffolds. The compressive strengths exceed that of commercial scaffolds, and biological tests revealed an increase in cell viability over 7 days for all hybrid scaffolds. Thus it is expected that the incorporation of 10 wt% bioactive glass will provide the added advantage of enhanced bioactivity in concert with improved mechanical stability.  相似文献   

3.
《Ceramics International》2017,43(9):6868-6875
In this paper, the compressive strength and in vitro bioactivity of sintered 45S5 bioactive glass scaffolds produced by powder technology and polymer foaming were investigated. The sintering temperature of scaffolds was 975 °C. The characterization of scaffolds before immersion in SBF was performed by scanning electron microscopy (SEM) and microtomography (μCT). The scaffolds were also tested for compression, and their density and porosity were measured. After immersion, the samples were observed through SEM and analyzed using EDS, X-ray diffraction (XRD), and infrared spectroscopy (FT-IR). Mass variation was also estimated. The glass-ceramic scaffolds showed a 61.44±3.13% interconnected porosity and an average compressive strength of 13.78±2.43 MPa. They also showed the formation of a hydroxyapatite layer after seven days of immersion in SBF, demonstrating that partial crystallization during sintering did not suppress their bioactivity.  相似文献   

4.
散射光弹性技术在化学钢化玻璃表面应力测量中的应用   总被引:1,自引:0,他引:1  
在智能手机、平板电脑等电子产品领域,化学钢化超薄玻璃的需求不断增加,而玻璃是易碎材料,要提高或保持强度和抗破碎能力,必须正确认识应力分布。如何有效的测量化学钢化玻璃的表面压应力(CS)和压应力层厚度(DOL),是当下一个迫切需要解决的问题。散射光弹性法是利用通过玻璃内部应力的双折射来改变极化激光束的延迟,并且散射光的强度随着激光束的延迟的变化而改变,最后通过偏振光光路上因激光束的延迟而出现的光程差和偏振特性来计算表面压应力和压应力层厚度。对散射光弹性法测量化学钢化玻璃的表面应力的理论依据、测量技术等进行了介绍。  相似文献   

5.
Carbon fiber reinforced SiC-based composites with unidirectional channels were obtained by freeze-casting and chemical vapor infiltration techniques, and their microstructure and fracture behavior were investigated. The results indicated that the sizes of the unidirectional channels could be controlled in the 15-70 μm range. The significant pseudo plastic and ductility features of the porous SiC-based composite were demonstrated during the fracture process. The strains of the composites reached 4 ± 1% and 50 ± 6% during bending and compressive experiments, respectively. The bending and compressive strengths, 123 ± 20 and 99 ± 15 MPa, respectively, were far superior to those of homogeneous ceramics presenting the same porosity. Combining the aforesaid method with 3D printing techniques, a SiC-based composite part with controlled macro-micro channels was fabricated, which indicated that this method could be useful for fabricating ceramic parts with complex structure and superior mechanical performance.  相似文献   

6.
In this study, ultra-light reticulated SiC foam (SF) with hollow skeleton was prepared by applying chemical vapor deposition technique to deposit SiC layer on carbon foam (CF) skeleton, followed by high temperature oxidation of CF. The microstructures of materials were examined by SEM and SF samples show higher specific surface area (349 ± 13 m2/g), initial oxidation temperature (1000 °C) and compressive stress (0.6 MPa) than CF. The compression test results show that the compressive strength of SF increased with the CVD time. While the compressive strength decreased significantly, when the CVD temperature reached 1200 °C. Keeping in view superior observed related characteristics, the prepared SF with special structures was anticipated to be suitable for catalysis, energy storage or membrane science.  相似文献   

7.
Anomalous water diffusion into SiO2 glass was observed in a low temperature range, below ~850°C, under a constant water vapor pressure of 355 Torr (47.3 kPa). Both the effective water diffusion coefficient and water solubility exhibited an anomalous time dependence. For example, water solubility in the low temperature range increased initially, achieving much higher values than expected based on extrapolation from higher temperature data, and then decreased with time toward an equilibrium value. This phenomenon was reported earlier, but a complete explanation was not possible; a new model is presented based upon glass surface compressive stress generation and subsequent surface stress relaxation. Water diffusion can promote stress generation and stress relaxation, both of which affect the reaction between diffused molecular water and the glass structure. By considering these stress effects, the anomalous water diffusion behavior in silica glass is explained. Furthermore, the same model can account for the reversal of external tensile and compressive stress effects on water solubility and diffusivity in silica glass observed after a few hours of heat treatment at 650°C in 355 Torr water vapor pressure.  相似文献   

8.
We introduce, for the first time to the best of our knowledge, the use of variable frequency microwave (VFM)‐assisted second ion exchange to selectively modify the compressive stress CS in chemically strengthened glass sheets, which allows for separation of these glass sheets into smaller pieces using a conventional cutting tool. The CS in paste‐coated zones, in the regions where it is desired for separation of the glass sheets, was successfully manipulated via VFM‐assisted second ion exchange, substituting the larger alkali ions in glass by smaller ions of the paste. Its effect on chemically strengthened glass was characterized using a strain viewer, an optical microscope, and an electron probe microanalyzer. We also report on the scribability and breakability across the stress relaxation zones. The results reveal a CS loss of only 3%, from 677 to 656 MPa, in the paste‐uncoated zones, and complete CS relaxation, down to 0 MPa, in the paste‐coated regions. The areas of relaxed CS enable the separation of the strengthened glass sheets using conventional wheel cutting.  相似文献   

9.
Chemical (impurity) tracer diffusion of Pr, Nd, and Co into polycrystalline La2NiO4+δ was done at 950°C–1350°C in air, argon, and intermediate pO2 (5.5 × 10?3 atm O2), and diffusion coefficients were extracted from depth profiles determined by Secondary Ion Mass Spectrometry (SIMS). The Pr and Nd profiles have only one broad region, corresponding to bulk diffusion, whereas the Co tracer depth profile has two distinct regions with different slopes, where the outer shallow region represents bulk diffusion and the inner region with deep penetration depths represents grain‐boundary diffusion. It is thus concluded that the diffusivity on the Ni‐site is enhanced by grain‐boundary diffusion. The bulk diffusion was evaluated using the solution of Fick's second law for thin‐film source, and the grain‐boundary diffusion was evaluated according to Whipple‐Le Claire's equation. The average apparent activation energies for Pr and Nd bulk diffusion are 165 ± 15 kJ/mol, for Co bulk diffusion 295 ± 15 kJ/mol, and for Co grain‐boundary diffusion 380 ± 20 kJ/mol. Qualitatively, the diffusivities and activation energies follow levels and trends in agreement with those from other experimental techniques. The apparent lack of—in fact reverse—correlation between activation energy and level of diffusivity is discussed in terms of a possibility that the faster species (Ni) reach equilibrium defect concentrations while the slower (La) is in effect frozen in.  相似文献   

10.
《Ceramics International》2021,47(22):31187-31193
In this study, porous calcium silicate (CS) ceramics with oriented arrangement of lamellar macropore structure were prepared by directional freeze casting method. The lamellar macropores were connected by the micropores on the pore wall, which had good pore interconnectivity. The effects of solid loading of the slurry, freezing temperature, sintering additive content, and sintering temperature on the microstructures and compressive strength of the synthesized porous materials were investigated systematically. The results showed that with the increase of solid loading (≤20 vol%) and sintering additive content, the sizes of lamellar pores and pore walls increased gradually, the open porosity decreased and the compressive strength increased. The sintering temperature had little effect on the pore size of the ceramics, but increasing the sintering temperature (≤1050 °C) promoted the densification of the pore wall, reduced the porosity, and improved the strength. The decrease of freezing temperature had little effect on porosity, but it reduced the size of lamellar pore and pore wall, so as to improve the strength. Finally, porous CS ceramics with lamellar macropores of about 300–600 μm and 2–10 μm micropores on the pore wall were obtained. The porous CS ceramics had high pore interconnectivity, an open porosity of 66.25% and a compressive strength of 5.47 MPa, which was expected to be used in bone tissue engineering.  相似文献   

11.
《Ceramics International》2020,46(8):11770-11775
Glass foams are modern developed building materials which are now favorably competing with conventional materials for applications in thermal insulation. In this study, glass foams are synthesized solely from waste container glasses of mixed colors using sodium silicate (water glass) as foaming agent. Several glass foams of 150 × 150 × 30 mm were prepared from waste glasses of 75 μm, 150 μm and 250 μm size with addition of 15 wt % sodium silicate respectively and pressed uniaxially under a pressure of 10 MPa. The prepared glass foams were then sintered at temperatures of 800 °C and 850 °C respectively. Tests such as bulk density, estimated porosity, flexural strength, compressive strength and microstructure evaluation were used to assess the performance of the developed glass foams. The results showed that with increasing temperature and grain sizes, the percent porosity of the developed foams increased while the bulk density decreased. The microstructure evaluation showed that the finer the grain sizes used, the more homogenized are the pores formed and the higher the temperature, the larger the pores but are mostly closed. Both compressive and flexural strength were found to decrease with grain sizes and higher temperatures. The thermal conductivities of all the developed foam glasses satisfy the standard requirement to be used as an insulating material as their thermal conductivities did not exceed 0.25 W/m.K.  相似文献   

12.
A study has been carried out to examine the effect of LaB6 addition on the compressive creep behavior of ZrB2-SiC composites at 1300–1400°C under stresses between 47 and 78 MPa in laboratory air. The ZrB2-20 vol% SiC composites containing LaB6 (10% in ZSBCL-10 and 14% in ZSBCL-14) besides 5.6% B4C and 4.8% C as additives were prepared by spark plasma sintering at 1600°C. Due to cleaner interfaces and superior oxidation resistance, the ZSBCL-14 composite has exhibited a lower steady-state creep rate at 1300°C than the ZSBCL-10. The obtained stress exponent (n ∼ 2 ± 0.1) along with cracking at ZrB2 grain boundaries and ZrB2-SiC interfaces are considered evidence of grain boundary sliding during creep of the ZSBCL-10 composite. However, the values of n ∼ 1 and apparent activation energy ∼700 kJ/mol obtained for the ZSBCL-14 composite at 1300–1400°C suggest that ZrB2 grain boundary diffusion is the rate-limiting mechanism of creep. The thickness of the damaged outer layer containing cracks scales with temperature and applied stress, indicating their role in facilitating the ingress of oxygen causing oxide scale growth. Decreasing oxidation-induced defect density with depth to a limit of ∼280 μm, indicates the predominance of creep-based deformation and damage at the inner core of samples.  相似文献   

13.
In the research, the effect of different critical plasma spray parameters (CPSP) on the microstructure and mechanical properties of plasma-sprayed LMA coatings with thickness of 797 μm were investigated. As a result, the porosity of coatings was increased from 12.14% to 24.88% with the decrease of CPSP from 1.20 to 0.86, while bonding strength of coatings was obviously reduced from 15.98 ± 0.36 MPa to 4.87 ± 0.7 MPa. Relatively, Young's modulus and hardness of the coatings exhibited a decreasing tendency with the decrease of CPSP. When the CPSP was decreased from 1.20 to 0.97, the residual compressive stress of coating surface varied from ?162.10 ± 12.13 MPa to ?93.49 ± 3.28 MPa, and that obtained from cross-section was decreased from ?116.02 ± 5.92 MPa to ?70.68 ± 3.99 MPa. Meanwhile, the fracture toughness of coating was improved from 0.62 ± 0.05MPa?m1/2 to 1.34 ± 0.05 MPa?m1/2, which was higher than that of cross-section of coating. The microstructure and mechanical properties of LMA thick coatings were strongly dependent on the CPSP.  相似文献   

14.
《Ceramics International》2023,49(6):9523-9533
In order to solve the problems (i.e. low infiltration efficiency, cracks, interface separation and poor mechanical properties) in the process of wood-derived C–SiC composites, the thermal modification of fir at low temperatures (300 °C ~ 350 °C) combined with sol-gel infiltration was used to successfully produce biomorphic ceramics. The prepared materials were comprehensively characterized and exhibited improved interfacial bonding between C and SiC and mechanical properties. The weight gain per unit volume (0.123 g/cm3) of SiO2 gel in the fir thermally modified at 300 °C is 167.4%, higher than that (0.046 g/cm3) of the unmodified fir. A well-bonded interface was formed between the SiO2 gel and the pore wall of the fir thermally modified at 300 °C. With the increase of modification temperature from 300 °C to 350 °C, the distance between SiO2 gel and the pore wall increases, and a gap (1–3 μm) is observed between SiO2 gel and the pore wall of the fir carbonized at 600 °C. The C–SiC composites sintered at 1400 °C exhibited the highest compressive strength and bending strength of 40.8 ± 5.8 MPa and 11.7 ± 2.1 MPa, respectively, owing to the well-bonded interface between C of fir thermally modified at 300 °C and SiC. However, the composites sintered at 1600 °C for 120 min exhibited the lowest compressive strength and bending strength of 28.1 ± 13.4 MPa and 5.7 ± 1.6 MPa, respectively, which are 31.1% and 51.3% lower than those sintered at 1400 °C for 120 min, respectively. This might result from the porous structure formed by the excessive consumption of fir-derived carbon during the reaction between C and SiO2 at 1600 °C for 120 min. Therefore, thermal modification in the preparation of biomorphic C–SiC composites can promote slurry infiltration and the formation of a well-bonded interface between C and SiC, thus improving the mechanical properties of the composites.  相似文献   

15.
Silicate (13-93) and borate (13-93B3) bioactive glass scaffolds were created by robotic deposition (robocasting) of organic solvent-based suspensions and evaluated in vitro for potential application in bone repair. Suspensions (inks) were developed, characterized, and deposited layer-by-layer to form three-dimensional scaffolds with a grid-like microstructure (porosity ≈50%; pore width 420 ± 30 μm). The mechanical response of the scaffolds was tested in compression, and the conversion of the glass to hydroxyapatite (HA)-like material in a simulated body fluid (SBF) was evaluated. As fabricated, the 13-93 scaffolds had a compressive strength 142 ± 20 MPa, comparable to the strength of human cortical bone, while the strength of the 13-93B3 scaffolds (65 ± 11 MPa), was far higher than that for trabecular bone. When immersed in SBF, the borate 13-93B3 scaffolds converted faster than the silicate 13-93 scaffolds to an HA-like material, but they also showed a sharper decrease in strength with immersion time. Based on their high compressive strength and bioactivity, the scaffolds fabricated in this work by robocasting could have potential application in the repair of load-bearing bone.  相似文献   

16.
《Ceramics International》2020,46(10):16465-16471
Pore size and connectivity of artificial bone scaffolds play key role in regulating cell ingrowth and vascularization during healing. The objective of this study was to develop a novel process for preparing 3D pore-interconnected open-cell bone substitutes with varying pore sizes. This was achieved by thermal-induced expansion, drying, then sintering the mixture of biphasic calcium phosphate (BCP) and a thermal responsive porogen comprising chitosan (CS) and hydroxypropyl methyl cellulose (HPMC). The interpolymer complexes (IPCs) of CS/HPMC were prepared and investigated by FT-IR. The mixtures of IPCs/BCP were heated up to 100 °C for analyzing their thermal expansion properties. This resulted in ~13% and ~42% volume increment for IPC-1/BCP and IPC-2/BCP, respectively, while ~230% volume increased in the case of IPC-3/BCP (therefore chosen for sintering bone blocks). Heating rate-dependent (0.20–0.25 °C/min range) sintering profiles for IPC-3/BCP were utilized to produce BCP bone blocks. Gasification of IPC during sintering resulted in the formation of interconnected porous structures, and the morphology was investigated by SEM, revealing varying sizes ranging from 106 ± 13 μm to 1123 ± 75 μm. The pore size range of bone blocks from 235 ± 46 μm to 459 ± 76 μm portrayed significantly high MC3T3-E1 cell viability with prominent filopodial extensions, and elongated cells, depicting efficient biocompatibility. Therefore, the process for preparing porous interconnected 3D bone blocks were feasible, thereby serving as an alternative for potential bone tissue engineering applications.  相似文献   

17.
To obtain an alkali-free glass substrate with enhanced properties for thin-film transistor–liquid crystal displays (TFT–LCDs) applications, we chose a base glass composed of 3B2O3-15Al2O3-58SiO2-22MgO-0.5SrO-1.5MgF2 (mol%) for nucleation–crystallization. The results show that when the nucleation–crystallization processes of the base glass are 810 °C/6 h + 880 °C/6–9 h, the prepared GC/6–GC/9 glass-ceramics exhibit enhanced properties because of the precipitation of nano-sized cordierite. The transmittances in the visible range of the GC/6–GC/9 glass-ceramics exceed 85%, the densities are 2.564–2.567 g/cm3, thermal expansion coefficients are 2.934–3.059 × 10-6/°C (25–300 °C), compressive strengths are 417–589 MPa, bending strengths are 141–259 MPa, Vickers hardnesses are 6.8–7.8 GPa, and strain points are approximately 735 °C. Considering these properties, the prepared GC/6–GC/9 glass-ceramics have good potential as candidate materials for alkali-free glass substrates. Additionally, these results demonstrate that it is feasible to improve the properties of alkali-free glass substrates by nucleation–crystallization.  相似文献   

18.
《Ceramics International》2021,47(20):28603-28613
Foam glass is a lightweight and high-strength building and decoration material with superior performance in heat insulation, sound absorption, moisture resistance and fire protection. The use of waste glass powder and fly ash to prepare foam glass is one of the most important ways to utilize solid waste as a resource. In this study, waste glass powder and fly ash were used as raw materials to prepare foam glass by a hydrothermal hot pressing–calcination method. The effects of fly ash content (0 wt%, 10 wt%, 20 wt%, 30 wt%), heating rate (1 °C/min, 3 °C/min, 5 °C/min, 8 °C/min, 10 °C/min) and calcination temperature (600 °C, 700 °C, 750 °C, 800 °C, 850 °C, 900 °C) on the microscopic morphology, density, compressive strength, porosity and other properties of the foam glass samples were studied. Their microstructure and morphology were analyzed by thermogravimetric analysis–mass spectrometry, X-ray diffraction, scanning electron microscopy and Fourier transform infrared spectroscopy. At a fly ash content of 10 wt%, the heating rate was 5 °C/min, the calcination temperature was 800 °C, the foam glass density was 0.3 g/cm3, the compressive strength was 1.65 MPa, the total porosity was 75.5%, and the effective thermal conductivity was 0.206 W/m·K. The effective thermal conductivity models of the composite materials were used to verify the experimental data. The relationship between the thermal conductivity of foam glass materials and the related influencing factors was investigated.  相似文献   

19.
《Ceramics International》2016,42(12):13761-13772
The incorporation of a bioactive inorganic phase in polymeric scaffolds is a good strategy for the improvement of the bioactivity and the mechanical properties, which represent crucial features in the field of bone tissue engineering. In this study, spray-dried mesoporous bioactive glass particles (SD-MBG), belonging to the binary system of SiO2-CaO (80:20 mol%), were used to prepare composite scaffolds by freeze-drying technique, using a silk fibroin matrix. The physico-chemical and biological properties of the scaffolds were extensively studied. The scaffolds showed a highly interconnected porosity with a mean pore size in the range of 150 µm for both pure silk and silk/SD-MBG scaffolds. The elastic moduli of the silk and silk/SD-MBG scaffolds were 1.1±0.2 MPa and 6.9±1.0 MPa and compressive strength were 0.5±0.05 MPa and 0.9±0.2 MPa, respectively, showing a noticeable increase of the mechanical properties of the composite scaffolds compared to the silk ones. The contact angle value decreased from 105.3° to 71.2° with the incorporation of SD-MBG particles. Moreover, the SD-MBG incorporation countered the lack of bioactivity of the silk scaffolds inducing the precipitation of hydroxyapatite layer on their surface already after 1 day of incubation in simulated body fluid. The composite scaffolds showed good biocompatibility and a good alkaline phosphatase activity toward human mesenchymal stromal cells, showing the ability for their use as three-dimensional constructs for bone tissue engineering.  相似文献   

20.
In this work, discarded glass bottles (GB) and eggshells (ES) were used to produce foam glass designed for thermal insulation. The literature on the thermal conductivity of foam glasses produced with eggshells is sparse. This material was used as pore-forming agent at 3% and 5% weight fractions to obtain a foam glass with low thermal conductivity. Homogenized powders were uniaxially pressed, and the compacts were fired at three temperatures (800, 850, and 900°C). Raw materials were characterized by chemical analysis and particle size distribution. The foam glasses were characterized by their porosity, phases, compressive strength, and thermal conductivity. The best insulating properties were obtained for the composition containing 5 wt% ES fired at 800°C. This sample displayed a porosity of 91.4% while its thermal conductivity was of 0.037 W/m.K, with a compressive strength of 1.12 ± 0.38 MPa. Crystalline phases were observed in samples fired at 850 and 900°C as a result of the devitrification process. The final properties of the materials are comparable to those of commercial foam glasses obtained from non-renewable, more expensive raw materials, a great indicator that the studied compositions could be used as an environmentally friendly substitute.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号