首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We report a study on the effect of the substitution of Bi3+ by Sr2+ on the stabilization of R3c structure of Bi1?xSrxFeO3 (0 ≤ x ≤ 0.3, Δx = 0.05), and its effect in the magnetic and dielectric behavior. Stoichiometric mixtures of Bi2O3, Fe2O3 and SrO were mixed and milled for 5?h using a ball to powder weight ratio of 10:1 by high-energy ball milling. The obtained powder were pressed at 900?MPa to obtain cylindrical pellets and sintered at 800?°C for 2?h. X-ray diffraction and Rietveld refinement were used to evaluate the effect of Sr2+ on the crystal structure. In addition, vibrating sample magnetometry (VSM) and dielectric tests were used for describing the multiferroic behavior. The results show that Sr-doped BiFeO3 particles present rhombohedral structure (R3c) characteristic of α-BiFeO3 when the doping is below 0.10?mol of Sr. Additionally, a gradual decrease in the amount of secondary phases with the increase of the amount of strontium is observed. For doping concentration higher than 0.15?mol of Sr, a phase transition to an orthorhombic symmetry (β-BiFeO3, Pbnm) is detected. Besides, changes in relative intensities of reflection peaks planes (110) and (104) are associated with the phase transformations and with the magnetic and dielectric behavior. The α-BiFeO3 phase show antiferromagnetic behavior and high values of dielectric permittivity, whereas the β-BiFeO3 phase show a ferromagnetic behavior and low dielectric permittivity.  相似文献   

2.
Sr2+ doped BiFeO3 (Bi1-xSrxFeO3, 0?≤x?≤?0.35) nanofibres were fabricated by a sol-gel based electrospinning method. The as-spun BiFeO3 (BFO) nanofibres consist of fine grained particles with high crystallinity. With Sr2+ doping, both the magnetic and photocatalytic properties of BFO are effectively improved. The best photocatalytic property for degradation of the methylene blue (MB) is obtained in Bi0.75Sr0.25FeO3 nanofibres due to their weakest photoluminescence (PL) intensity. Meanwhile, the photocatalytic property of Bi0.75Sr0.25FeO3 nanofibres is much higher than that of nanoparticles with the same constituent, which is attributed to the unique one-dimension fibrous structure benefiting the separation and decreased recombination of e-/h+ pairs. This work proposes an effective approach for the degradation of organic pollutes.  相似文献   

3.
This work reports on the preparation, structure, photochemical, and magnetic properties of six-layered Aurivillius bismuth ferrititanates, that is, Bi7Ti3Fe3O21, Bi7(Ti2Nb)Fe3O21+δ, and Bi7(Ti2Mg)Fe3O21−δ nanoparticles. The samples were prepared through the modified citrate complexation and precursor film process. The XRD Rietveld refinements were conducted to study the phase formations and crystal structure. The morphological and chemical component characteristics were investigated using SEM, TEM, and EDX analyses. Bi7Ti3Fe3O21, Bi7(Ti2Nb)Fe3O21+δ, and Bi7(Ti2Mg)Fe3O21−δ nanoparticles present an indirect allowed transitions with band energies of 2.04, 2.03, and 2.02 eV, respectively. The hybridized (O2p+Fet2g+Bi6s) formed the valence band (VB) and electronic components of (Ti–3d+Fe–eg) formed the conduction band (CB) of this six-layered Aurivillius bismuth ferrititanate. The three samples showed efficient photocatalytic degradation of Rhodamine B (RhB) dyes with the excitation wavelength λ > 420 nm. The optical absorption, photodegradation, and magnetic abilities were improved through microstructural modification on “B” site via partial substitution of Mg2+ and Nb5+ for Ti4+. The photocatalytic results were discussed based on the layer structure and multivalent Fe ions. Fe3+/2+ in the perovskite slabs (Bi5Fe3Ti3O19)2− could act as the catalytic mediators in the photocatalysis process. As a photocatalyst, Aurivillius Bi7(Ti2Mg)Fe3O21−δ nanoparticle is advantageous due to its photocatalytic and magnetically recoverable abilities.  相似文献   

4.
The obtaining of multiferroic BiFeO3 as a pure single-phase product is particularly complex since the formation of secondary phases seems to be unavoidable. The process by which these secondary impurities are formed is studied by analyzing the diffusion and solid state reactivity of the Bi2O3-Fe2O3 system. Experimental evidence is reported which indicates that the progressive diffusion of Bi3+ ions into the Fe2O3 particles governs the solid state synthesis of the perovskite BiFeO3 phase. However a competition is established between the diffusion process which tends to complete the formation of BiFeO3, and the crystallization of stable Bi2Fe4O9 mullite crystals, which tend to block that formation reaction.  相似文献   

5.
《Ceramics International》2022,48(16):23300-23306
Bismuth doped NiFe2O4 (NFO) polycrystalline samples: Ni1-xBixFe2O4 with x = 0.00, 0.05 and 0.10, were synthesized using solid-state reaction method. The crystal structural, magnetic structure and magnetic properties of parent NFO and Bi-doped NFO samples were characterized using X-ray diffraction (XRD), neutron powder diffraction (NPD) and magnetization (M) versus magnetic field (H) isotherms, respectively. Rietveld refinement of XRD and NPD patterns confirms the formation of a single-phase cubic spinel crystal structure. No observable change in the lattice parameter was found (within the error limits) with the 5 at % Bi doping to NFO, whereas ≈0.15% change in the lattice parameter was observed in case of 10 at % Bi-doped NFO. Room temperature magnetic structure studies using NPD reveal a net magnetic moment of 1.55(3) μB/f. u., in the case of NiFe2O4. The net magnetic moment at room temperature changes to 1.61(4) μB/f.u. and 1.47(5) μB/f.u. for Ni0.95Bi0.05Fe2O4 and Ni0.90Bi0.10Fe2O4, respectively. The same observation was also inferred from the spontaneous magnetization (Msp) obtained from approach-to-saturation (ATS) analysis of M-H isotherms. Temperature (T) dependence of Msp follows a T2 decline. Approximately 14% increase in magnetic anisotropy was observed in Ni0.95Bi0.05Fe2O4 compared to NiFe2O4 in the temperature range 5 K -300 K.  相似文献   

6.
《Ceramics International》2016,42(13):14805-14812
In this communication, we present the results on Bi1−xLaxFe1−yNiyO3 (x=0.0, 0.1; y=0.0, 0.05) samples processed by solid-state reaction route in order to study crystalline and electronic structure, dielectric and ferroelectric properties. The best refinement was achieved by choosing rhombohedral structure (R3c) for BiFeO3 and Bi0.9La0.1FeO3 samples. Whereas, the XRD pattern of BiFe0.95Ni0.05O3 and Bi0.9La0.1Fe0.95Ni0.05O3 samples were refined by choosing rhombohedral (R3c) and cubic (I23) structure. Raman scattering measurement infers nine Raman active phonon modes for all the as prepared samples. The substitution of Ni ion at Fe-site in BiFeO3 essentially changes the modes position i.e. all the modes are observed to shift to lower wave number. Dielectric constant (ε′) and dielectric loss (tan δ) as a function of frequency have been investigated and they decreases with increasing frequency of the applied alternating field and become constant at high frequencies. This feature is a characteristic of Maxwell Wagner type of interfacial polarization. The remnant polarization (Pr) for Bi0.9La0.1FeO3, BiFe0.95Ni0.05O3, and Bi0.9La0.1Fe0.95Ni0.05O3 are 0.08, 0.11, 0.69 μC/cm2, respectively and the value of coercive field for Bi0.9La0.1FeO3, BiFe0.95Ni0.05O3, and Bi0.9La0.1Fe0.95Ni0.05O3 are 0.53, 0.67, 0.68 kV/cm, respectively. X-ray absorption spectroscopy (XAS) experiments at Fe L2,3 and O K-edges are performed to investigate the electronic structure of well-characterized Bi1−xLaxFe1−yNiyO3 (x=0.0, 0.1; y=0.0, 0.05) samples. The presence of reasonable ferroelectric polarization at room temperature in Bi0.9La0.1Fe0.95Ni0.05O3 ceramics makes it suitable for technological applications.  相似文献   

7.
Pure perovskite BiFeO3, sillenite Bi2Fe4O9, and BiFeO3/Bi2Fe4O9 were synthesized facilely by controlling the precursor Bi/Fe ion ratio through a hydrothermal method. The phase composition, morphology, optical properties, and photocatalytic activity of as‐prepared samples were investigated in detail. Our results indicate that the morphology and properties of products strongly dependent on the precursor Bi/Fe ion ratio. Photocatalysis of Congo Red reveals that sillenite Bi2Fe4O9 shows superior activity to perovskite BiFeO3, and BiFeO3/Bi2Fe4O9 exhibited higher activity with 71.45% degradation rate in 90 min. It provides an easy and efficient way to tune the composition and photocatalytic activity of Bi‐based oxides.  相似文献   

8.
《Ceramics International》2016,42(16):18692-18699
Bi1−xPrxFe0.97Mn0.03O3 (x=0.00, 0.05, 0.10, 0.15, 0.20) thin films were deposited on FTO/glass substrate using chemical solution deposition. The influences of Pr doping on the crystalline structure and multiferroic properties were investigated. In the X-ray diffraction and Raman spectra results, the crystal structures of Bi1−xPrxFe0.97Mn0.03O3 films revealed a gradual transformation from the trigonal structure to the tetragonal structure. The leakage current densities of Bi1−xPrxFe0.97Mn0.03O3 films are one order of magnitude lower than that of BiFeO3. Compared with unsaturated polarization-electric field hysteresis loop of BiFeO3 film, the Pr and Mn co-doped BFO films have significantly improved ferroelectric properties. The improved remnant polarization (Pr=91.3 µC/cm2) and the positive switching current (I=0.028 A) have been observed in Bi0.85Pr0.15Fe0.97Mn0.03O3 film. The improved electrical properties are attributed to the structure transformation, increasing grain boundaries, low oxygen vacancies ratio and increasing Fe3+ concentration. In addition, the saturation magnetization of Bi0.85Pr0.15Fe0.97Mn0.03O3 film is 1.81 emu/cm3, which is approximately three times higher than pure BiFeO3 (Ms=0.67 emu/cm3).  相似文献   

9.
《Ceramics International》2019,45(16):20226-20233
One of the significant motivations in developing intermediate-temperature solid oxide fuel cells (IT-SOFCs) is to design cobalt-free cathodes with high electrocatalytic activity and CO2 tolerance ability. In this work, iron-based perovskite materials Bi0.5Sr0.5Fe1-xTaxO3-δ are investigated as potential cathodes for IT-SOFCs. The effects of Ta doping on crystal structure, thermal expansion coefficients and electrocatalytic activities are systematically evaluated. Among the Ta-doped oxides, Bi0.5Sr0.5Fe0.9Ta0.1O3-δ exhibits the highest electrochemical performance with the lowest polarization resistance (Rp) of 0.124 Ω cm2 at 700 °C in air. The peak power density of the single cell with Bi0.5Sr0.5Fe0.9Ta0.1O3-δ cathode reaches 1.36 W cm−2 at 700 °C. Compared to Bi0.5Sr0.5FeO3-δ, the improved CO2 tolerance of Ta-doped oxides can be attributed to the high acidity of Ta5+ cations and the increased average metal bond energy (ABE) within the material. Further study proves that the adsorption-dissociation process of molecular oxygen is the limiting step for oxygen reduction reaction (ORR) on Bi0.5Sr0.5Fe0.9Ta0.1O3-δ cathode.  相似文献   

10.
Hierarchically spinel NixCo1-xFe2O4 (0.0?≤?x?≤?0.5) microcubes were successfully prepared through a combined solvent evaporation strategy and morphology-inherited annealing treatment. By using the Fe-based metal-organic frameworks (MOFs), Fe4(Fe(CN)6)3, and inorganic Ni2+and Co2+ acetate salts as co-templated precursors, hierarchical Ni-doped spinel CoFe2O4 architecture can be obtained, and the Ni/Co substitution ratios can be controlled systematically. The obtained cubic hierarchical NixCo1-xFe2O4, (0.0?≤?x?≤?0.5) composites presented highly acetone sensing properties, among which the Ni0.1Co0.9Fe2O4 composite showed the strongest response performance (with gas response (Rg/Ra) of 1.67 at 240?°C) and excellent reproducibility (for at least 14 cycles), and the proposed acetone sensing mechanism was also discussed. The presented solvent evaporation and co-templated strategy may allow precisely access to fabricating other heteroatom doped inorganic materials with intriguing morphologies, architectures, chemical compositions and tunable sensing properties.  相似文献   

11.
In this study, oleylamine (OAm) capped FeMnyCoyFe2?2yO4 (0.0?≤?y?≤?0.4) nanocomposites (NCs) were prepared via the polyol route and the impact of bimetallic Co3+ and Mn3+ ions on the structural and magnetic properties of Fe3O4 was investigated. The complete characterization of FeMnyCoyFe2?2yO4@OAm NCs were done by different techniques such as XRD, SEM, TGA, FT-IR, TEM, and VSM. XRD analyses proved the successful formation of mono-phase MnFe2O4 spinel cubic products free from any impurity. The average crystallite sizes were calculated in the range of 9.4–26.4 nm using Sherrer’s formula. Both SEM and TEM results confirmed that products are nanoparticles like structures having spherical morphology with small agglomeration. Ms continued to decrease up to Co3+ and Mn3+ content of y?=?0.4. Although Mössbauer analysis reveals that the nanocomposites consist three magnetic sextets and superparamagnetic particles are also formed for Fe3O4, Co0.2Mn0.2Fe2.6O4 and Co0.4Mn0.4Fe2.2O4. Cation distributions calculation was reported that Co3+ ions prefer to replace Fe2+ ions on tetrahedral side up to all the concentration while Mn3+ ions prefer to replace Fe3+ ions on the octahedral.  相似文献   

12.
Effects of Ho and Ti ions individual doping and co‐doping on the structural, electrical, and ferroelectric properties of the BiFeO3 thin films are reported. Pure BiFeO3, (Bi0.9Ho0.1)FeO3, Bi(Fe0.98Ti0.02)O3+δ, and (Bi0.9Ho0.1)(Fe0.98Ti0.02)O3+δ thin films were prepared on Pt(111)/Ti/SiO2/Si(100) substrates by using a chemical solution deposition method. All thin films were crystallized in distorted rhombohedral structure containing no secondary or impurity phases confirmed by using an X‐ray diffraction study. Changes in microstructural features, such as grain morphology and grain size distribution, for the doped samples were analyzed by a scanning electron microscopy. From the experimental results, a low electrical leakage (1.2 × 10?5 A/cm2 at 100 kV) and improved ferroelectric properties, such as a large remnant polarization (2Pr) of 52 μC/cm2 and a low coercive field (2Ec) of 886 kV/cm, were observed for the (Bi0.9Ho0.1)(Fe0.98Ti0.02)O3+δ thin film. Fast current relaxation and stabilization observed in the (Bi0.9Ho0.1)(Fe0.98Ti0.02)O3+δ imply effective reduction and neutralization of charged free carriers.  相似文献   

13.
《Ceramics International》2020,46(11):18453-18463
Nowadays, investigations on the materials with multiferroic properties are in progress. These materials compromise simultaneous electric and magnetic properties. Ferrite Bismuth (FB) is one of the ceramic materials that enjoy this property and possesses three different crystalline structures (perovskite BiFeO3, selenite Bi25FeO40 and mullite Bi2Fe4O9). In this review, first, the crystalline structure and the electric and magnetic properties of Bi2Fe4O9 are studied, and then, the effects of adding dopants to the ferrite are discussed. Mullite-type bismuth ferrite (Bi2Fe4O9) as a spin frustrated multiferroic has potential for magnetoelectric coupling, and it might be an appropriate alternative for some of the multiferroics that suffer from a weak magnetoelectric coupling.  相似文献   

14.
Bi0.96Sr0.04Fe0.98−xMnxCo0.02O3 (BSFMxCO, x = 0.00–0.05) thin films with ferroelectric properties were successfully prepared by chemical solution deposition (CSD). It is found that BSFMxCO has a stable trigonal structure. The conversion from Fe3+ to Fe2+ inhibiting Mn3+ and the synergistic effects of Mn3+ and Co3+ reduce the oxygen vacancies, which prevents the formation of defect complexes. The results show that the leakage current of BSFM0.04CO is dropped to 0.011 A/cm2. Simultaneously, the weakened grain boundaries resistance and the pinning effect by doping Mn3+ reduce the built-in electric field effectively, which enhances the polarization reversal current and the capacitance. Under the applied electric field, we have obtained the intrinsic residual polarization value of 151 μC/cm2, thanks to the easily reversed domains of BSFM0.04CO and the enhanced intrinsic polarization. Therefore, ion doping can reduce oxygen vacancies and the grain boundary resistance. As a result, the intrinsic ferroelectricity in BiFeO3 is enhanced by the improvement of intrinsic polarization.  相似文献   

15.
The crystal structure, domain patterns, and ferroelectric properties of Fe-modified BNT-ST [0.77(Bi0.5Na0.5)TiO3-0.23Sr(Ti1-xFex)O3] ceramics, fabricated by a conventional solid-state reaction, were investigated. Core-shell structures were observed and the volume fractions of the core-domain and shell (relaxor-matrix) were found to be dependent on Fe-modification content. The crystal structures of the core-domain and the relaxor-matrix were rhombohedral with the space group R3c, and the tetragonal with the space group P4bm, respectively. Compositional inhomogeneity, specifically, the enrichment of Bi3+ and Na+ and the considerable depletion of Sr2+, were observed in the core-domain region, and was reduced by substituting Ti4+ with Fe3+. The Fe-modification of the BNT-23ST ceramics promoted the diffusion of Sr2+ ions into the core region and shifted ferroelectric behaviour towards ergodic-relaxor behaviour. This improved the effective d33* of BNT-23ST ceramics to over 500 pm/V at 2 kV/mm.  相似文献   

16.
The Co0.33Ni0.33Mn0.33Fe2O4/graphene nanocomposite for electromagnetic wave absorption was successfully synthesized from metal chlorides solutions and graphite powder by a simple and rapid microwave-assisted polyol method via anchoring the Co0.33Ni0.33Mn0.33Fe2O4 nanoparticles on the layered graphene sheets. The Fe3+, Co2+, Ni2+ and Mn2+ ions in the solutions were attracted by graphene oxide obtained from graphite and converted to the precursors Fe(OH)3, Co(OH)2, Ni(OH)2, and Mn(OH)2 under slightly alkaline conditions. After the transformations of the precursors to Co-Ni-Mn ferrites and conversion of graphene oxide to graphene under microwave irradiation at 170?°C in just 25?min, the Co0.33Ni0.33Mn0.33Fe2O4/graphene nanocomposite was prepared. The composition and structure of the nanocomposite were characterized by X-ray diffraction (XRD), inductive coupled plasma emission spectroscopy (ICP), X-ray photoelectron spectroscopy (XPS), Fourier transform infrared spectroscopy (FT-IR), Raman spectroscopy (RS), transmission electron microscopy (TEM), etc. It was found that with the filling ratio of only 20?wt% and the thickness of 2.3?mm, the nanocomposite showed an ultra-wide effective absorption bandwidth (less than ?10?dB) of 8.48?GHz (from 9.52 to 18.00?GHz) with the minimum reflection loss of ??24.29?dB. Compared to pure graphene sheets, Co0.33Ni0.33Mn0.33Fe2O4 nanoparticles and the counterparts reported in literature, the nanocomposite exhibited much better electromagnetic wave absorption, mainly attributed to strong wave attenuation, as a result of synergistic effects of dielectric loss, conductive loss and magnetic loss, and to good impedance matching. In view of its thin thickness, light weight and outstanding electromagnetic wave absorption property, the nanocomposite could be used as a very promising electromagnetic wave absorber.  相似文献   

17.
Fe2-xAgxO3 (0?≤?x?≤?0.04) nanopowders with various Ag contents were synthesized at different hydrothermal reaction temperatures (150?°C and 180?°C). Their structural properties were fully investigated through an X-ray diffraction, a Fourier transform infrared spectroscopy, and an X-ray photoelectron spectroscopy. The hydrothermal reaction temperature, time, and Ag content remarkably affected the morphological characteristics and crystal structure of the synthesized powders. The Fe2-xAgxO3 (0?≤?x?≤?0.04) powders synthesized at 150?°C for 6?h and the Fe2-xAgxO3 (0.02?≤?x?≤?0.04) powders synthesized at 180?°C for 12?h formed the orthorhombic α-FeOOH phase with a rod-like morphology, whereas the Fe2-xAgxO3 (0?≤?x?≤?0.01) powders synthesized at 180?°C for 12?h formed the rhombohedral α-Fe2O3 phase with a spherical-like morphology. The Fe1.98Ag0.02O3 fabricated by utilizing Fe1.98Ag0.02O3 powders synthesized at 180?°C showed the largest power factor (0.64?×10?5 Wm?1 K?2) and dimensionless figure-of-merit (0.0036) at 800?°C.  相似文献   

18.
In this work, we have synthesized and characterized yttrium iron garnet nanoparticles doped with cobalt. The X-ray diffraction data showed a single phase, belonging to the cubic structure of Y3Fe5O12. Rietveld refinement revealed variation of the angles and interionic distances (Fe3+(a)-O2-Y3+(c) and Fe3+(d)-O2--Y3+(c) when Fe3+ ions are replaced by Co3+ ions in the tetrahedral (d) and octahedral (a) sites of YIG. In addition, the lattice parameter a, decreases from 12.3846?Å to 12.3830?Å with the increasing of cobalt concentration. The analysis by Infrared and Raman spectroscopies has shown a slight stretching at lower wave numbers as the dopant concentration increased. The magnetic measurements confirm the substitution of Fe3+ by Co3+ in the a-sites and d-sites with the reduction of the saturation magnetization from 26.63?emu/g to 24.92?emu/g, for 0.000?≤?y?≤?0.030. Changes in the coercive field varying the dopant concentration were related to the particle size and pinning centers existence.  相似文献   

19.
A site doped Rh perovskites with general formula La0.75A0.25Rh0.7Cu0.3O3 and La0.75A0.25Rh0.5Cu0.5O3 (A=Ca2+, Sr2+, Pb2+and Bi3+) were synthesized by solid-state methods and their crystallographic, magnetic, and electric properties investigated. Doping by divalent cations resulted in much lower cell volumes and octahedral distortions than doping with a trivalent oxide. The Pb2+ and Bi3+ (6s2) doped oxides exhibited the lowest magnetic moments and the highest activation energies. Magnetization curves are indicative of antiferromagnetic behavior. The addition of Ca2+, Sr2+, Pb2+and Bi3+cations to the A-site decreases the conductivity.  相似文献   

20.
Bismuth Cobalt Oxide (BixCo3-xO4) nanoparticles with different compositions (x?=?0, 0.025, 0.05, 0.1, 0.2) were prepared by chemical precipitation method. The structural, morphological and thermal properties of the prepared samples were studied by XRD, SEM, FTIR and TG&DTA analysis. X-ray diffraction analysis shows that pure phase of Cobalt oxide was formed till x?≤?0.05 and while increasing the Bi concentration (0.05?≤ x?≤?0.2) mixed phases of Co3O4, Co2O3, CoO and separate phase of Bi2O3 were formed. The diffraction peaks were reasonably shifted due to substitution of Bi2+ ions. XPS analysis conforms the presence of mixed valance states of Co and presence of Bi with their binding states in the samples. The electrical resistivity and Seebeck coefficient were measured for BixCo3-xO4 (0?≤ x?≤?0.2) at different temperatures. It was observed that the electrical resistivity decrease till x?≤?0.05 due to the substitution of Bi ions in Cobalt lattice and increases at higher x values (0.05?≤ x?≤?0.2) due to the formation of Bi2O3 phase. The Bi substitution has considerably reduced the electrical resistivity by one order when completely dissolved in the cobalt oxide lattice at lower x values. The Seebeck coefficient value gradually increased for all samples of BixCo3-xO4 (0?≤ x?≤?0.2). The power factor was calculated from electrical resistivity and Seebeck coefficient and the maximum power factor of 0.025 µWm?1K?2 was obtained for Bi0.2Co2.8O4 sample at 530?K. The experimental results revealed that the Bi substitution have promising effect on the thermoelectric properties of nanostructured BixCo3-xO4 (0?≤ x?≤?0.2).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号