首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 682 毫秒
1.
A solution methodology is proposed for the process development and process engineering of a continuously operated jet loop bubble column including integrated external or internal steam generation for, e.g., a high-efficiency large-scale medium pressure methanol and or dimethyl ether production, or other gas to liquid Fischer-Tropsch applications.A jet loop bubble column is defined in the present process development to study the combined integration of a jet-eductor draft tube system with an upper bubble column. The major advantages resulting from the integrated jet-eductor draft tube system in large-scale bubble columns are the guidance and good mixing efficiency of the multiphase flow up to the upper part of the bubble column. Reducing the bubble column operating liquid level at about 2.5-3.0 times of the column diameter above the upper end of the draft tube results in a classical jet-eductor draft tube reactor suitable for small and or medium-scale industrial applications.Methanol synthesis is usually executed catalytically in multistage packed beds at higher pressure, e.g. 26 MPa, and about 350-, resulting in a higher plant installation and operating cost. The successful scale-up of a slurry jet loop bubble column can achieve a higher catalytic selectivity at a lower pressure and temperature , and therefore reduce the overall plant investment and production cost [Toseland, 1999. Three phase flows under extreme conditions of pressure and temperature, Part II: industrial applications, Air products and Chemicals, Inc. Presented at the A.I.Ch.E. Annual Meeting, Dallas, TX; Fan, 1999. Three phase flows under extreme conditions of pressure and temperature, Part I: fundmental characteristics, Department of Chemical Engineering, The Ohio State University. Presented at the A.I.Ch.E. Annuxal Meeting, Dallas, TX]. In addition, the separate slurry production of dimethyl ether, or even coproduction with methanol, can be a more cost-effective process than the classical methanol dehydration process.The new Modified Slurry Process© for large-scale methanol and or dimethyl ether production is presented including internal or external heat exchanger location for steam production.A process concept is developed of a Large Scale Slurry Jet Loop Bubble Column© with external separator, auxiliary internal heat exchanger equipment and high-efficiency gas-liquid slurry jet-eductor mixing system including draft tubes and an upper bubble column. In addition, as comparison a simplified concept is discussed for a small-to-medium-scale slurry jet loop reactor including external steam production and bottom nozzle jet-eductor installation without the presence of an upper bubble column.The basic geometrical parameters of the proposed slurry jet loop bubble column and jet loop reactor are discussed. The influence of the selected geometrical parameters on the gas holdup, interfacial area and mixing is analyzed. Information about catalyst type and particle size distribution is also presented.The definition of optimal operating conditions related to the influence of the fluid dynamics and mixing on mass transfer efficiency and also information for the minimum required power input per unit volume for startup or stable reactor operation are discussed.A simplified estimation method is presented for the expected axial temperature difference across the overall length of the jet bubble column, and also the required heat transfer area of a new construction-type internal compact heat exchanger for efficient reactor cooling and operation.Scale-up is possible for large diameter jet loop bubble columns, typically up to 5 m diameter and 60 m height, including continuous three-phase slurry operation at higher power input and interfacial area, for more efficient synthesis gas absorption and reaction than in classical slurry bubble columns. Integration of suitable designed sieve trays can further guarantee an efficient operation of the lower jet loop draft tube system at higher column diameters and also achieve an efficient reactor operation in the upper bubble column section.  相似文献   

2.
Automated experimentation in microwell plate formats is widely used in high throughput drug discovery. Such approaches are now being considered for the study of bioprocess unit operations in order to speed the delivery of new medicines to market. The generation of useful design data from microwell formats requires an understanding of the engineering environment within individual microwells. Rapid and efficient macro-mixing is crucial in this respect to ensure the generation of quantitative and reproducible data. In this study, we have developed a high-speed video technique for the accurate quantification of jet macro-mixing times in static microwell plates which also enables visualisation of jet formation and liquid flow patterns within wells. Mixing times have been determined using both the fixed and disposable tips of a Perkin Elmer MultiProbe IITM liquid handling robot for a range of jet Reynolds numbers (Rej=1000-3960) and liquid addition volumes . Three microwell geometries have been investigated; one that is identical to a single well from a standard 96-round well plate and two novel designs based upon theories of jet mixing (Vi=200 and ). For conditions where macro-mixing was complete within the lifespan of the jet, t95 mixing times for the standard round well were in the range 0.033-0.121 s while for the larger of the two designed wells they were in the range 0.228-0.705 s. The rapid mixing times in the standard round well are a consequence of increased energy dissipation as the liquid jet impinges on the base of the well. For the two designed wells maximising the jet length to nozzle diameter ratio (X/di) is shown to promote the most efficient macro-mixing due to entrainment and circulation of the bulk liquid in the well. For low volume additions and short jet lifespans it is also shown that mixing times can be of the order of minutes. Finally, the t95 results for each of the well geometries have been correlated to the conditions used for jet formation using a correlation of the form first proposed by Baldyga and co-workers [Baldyga, J., Bourne, J.R., Dubuis, B., Etchells, A.W., Gholap, R.V., Zimmermann, B., 1995. Jet reactor scale-up for mixing controlled reactions. Chemical Engineering Research & Design 73, 497-502]. This enables good prediction of the experimentally determined mixing times and estimation of the minimum liquid addition volume (VCrit) that will ensure rapid and efficient macro-mixing. The correlation therefore enables automation users to optimise or control macro-mixing times in microwell experiments.  相似文献   

3.
黄正梁  帅云  杨遥  孙婧元  王靖岱  阳永荣 《化工学报》2018,69(11):4648-4654
喷嘴结构对射流鼓泡反应器的混合和传质性能具有重要的影响。以空气-水作为模拟介质,使用双探头电导探针、电解质示踪法和动态溶氧法,对比研究了缩径式圆形喷嘴和旋扭三角形喷嘴对射流鼓泡反应器中气泡尺寸分布、平均气含率、液相混合时间和气液传质系数的影响规律。实验发现,随着气速或液体射流Reynolds数的增大,两种喷嘴对应的平均气含率、液相混合时间和气液传质系数具有相同的变化规律;与缩径式圆形喷嘴相比,采用旋扭三角形喷嘴的射流鼓泡反应器中气泡尺寸更小,平均气含率更高,宏观混合时间更短;当气体输入功占总输入功比例超过20%时,喷嘴结构对气液传质系数的影响较小,当气体输入功占总输入功比例小于20%时,旋扭三角形喷嘴的气液传质性能优于缩径式圆形喷嘴。研究结果可为工业射流鼓泡反应器喷嘴结构的优化提供理论指导。  相似文献   

4.
Mass transfer in multiphase systems is one of the most studied topics in chemical engineering. However, in three-phase systems containing small particles, the mechanisms playing a role in the increased rate of mass transfer compared to two-phase systems without particles, are still not clear. Therefore, mass transfer measurements were carried out in a 2D slurry bubble column reactor , a stirred tank reactor with a flat gas-liquid interface, and in a stirred tank reactor with a gas inducing impeller. The rate of mass transfer in these reactors was investigated with various concentrations of active carbon particles (average particle size of ), with electrolyte (sodium gluconate), and with combinations of these. In the bubble column, high-speed video recordings were captured from which the bubble size distribution and the specific bubble area were determined. In this way, the specific mass transfer area agl was determined separately from the mass transfer coefficient kl. Mechanisms proposed in literature to describe mass transfer and mass transfer enhancement in stirred tank reactors and bubble columns are compared. It is shown that the increased rates of mass transfer in the 2D bubble column and in the stirred tank reactor with the gas inducing impeller are completely caused by an increased gas-liquid interfacial area upon addition of carbon particles and electrolyte. It is suggested that an increased level of turbulence at the gas-liquid interface caused by carbon particles accounts for a smaller effective boundary layer thickness and an enhancement of mass transfer in the flat gas-liquid surface stirred tank reactor. However, for the carbon particles used in this study, it is rather unlikely that mass transfer enhancement takes place due to the well-known shuttle or grazing effect.  相似文献   

5.
An experimental study of fluidic mixing in a cylindrical reactor was conducted in order to determine the effects of jet position and liquid viscosity. The tests were carried out in a tank of 0.09 m3 liquid volume using eight conductimetric probes to measure the mixing time. Relative jet positions leading to an impinging flow structure have been found to be less efficient than shear flow configurations. Mixing time and inhomogeneity correlations extending the previous results of Simon and Fonade (1993) are put forward for mixing by steady or unsteady jets.  相似文献   

6.
Treatment of wastewater containing high organic matter was investigated by means of a jet loop bioreactor combined with a membrane process. Volume of jet loop bioreactor and area of membrane filtration unit were 23 l and 155 cm2 respectively. It was found that jet loop reactor had high mass transfer coefficient (KLa) varying from 58.8 to 486 h-1 depending on the water flow rate (i.e. power input) and air flow rate. Oxygen transfer efficiency and oxygenation capacity of the reactor varied from 12 to 22.5% and from 0.2 to 1.8 , respectively. The efficiency of jet loop membrane bioreactor was found to be approximately 97% for a volumetric organic load of 2- over a period of 10 weeks. The reactor was not disturbed from the organic loads up to , but the treatment efficiency decreased to about 60% at higher organic loads. This decrease was due to insufficient oxygen transfer rate. The relationship between the effluent substrate concentration and the specific oxygen uptake rate (SOUR) values was determined. Applied food/microorganism (F/M) ratio was varied between 2.5 and . Critical sludge age of the system () was evaluated to be 7.2 h. Sludge with unsatisfactory settling characteristics formed at high F/M values under turbulent conditions. Therefore, membrane process was used for solid-liquid separation and effluent solid concentration was approximately zero. Specific cake resistances (α) changed with F/M ratio. It was found that permeate fluxes were significantly effected with F/M ratio much more than mixed liquor suspended solids (MLSS). Average flux was for pore sized cellulose acetate membrane. It was concluded that the jet loop membrane bioreactor has distinctive advantages such as the ability to treat high strength wastewater, low area requirements and easy operation.  相似文献   

7.
Radioactive tracer measurements, using impulse injections of Ar41, powdered oxide of Mn56 and real catalyst particles doped with an oxide of Mn56, conducted at the Advance Fuels Development Unit (AFDU) slurry bubble column (BC) reactor during dimethyl ether (DME) synthesis (reactor pressure of 5.27 MPa, reactor temperature of , inlet superficial gas velocity of 17.1 cm/s, and a catalyst loading of 36 wt%) at LaPorte, Texas, are interpreted. The differences in the responses obtained by the catalyst and fine powdered Mn2O3 tracer injections are minimal indicating the validity of the pseudo-homogeneous assumption for the liquid plus solid (catalyst) phase mixtures. The gas-liquid recirculation model [Gupta et al., 2001a. Comparison of single- and two-bubble class gas-liquid recirculation models—application to pilot-plant radioactive tracer studies during methanol synthesis. Chemical Engineering Science 56(3), 1117-1125. 2001b. Hydrodynamics of churn turbulent bubble columns: gas-liquid recirculation and mechanistic modeling. Catalysis Today 64(3-4), 253-269], based on a constant bubble size, describing gas-liquid mass transfer superimposed on turbulent mixing of the gas and liquid phases, is used to simulate the gas, liquid and catalyst tracer responses acquired at the AFDU. The model is able to predict the characteristic features of the experimental responses observed for gas, slurry powder and catalyst tracers at different reactor elevations. The fact, that the same model was previously shown capable of predicting both gas and liquid radioactive tracer responses during methanol and Fischer-Tropsch (FT) synthesis, indicates that this model offers a relatively simple tool for assessing mixing and transport in bubble (BCs) for a variety of gas conversion processes and provides a phenomenologically based framework for BC reactor modeling.  相似文献   

8.
羰基合成反应一般采用射流鼓泡反应器,该类反应器气液混合的方式采用射流而非机械搅拌,其主要优点是结构简单、制作简便、维护费用低。研究该类型反应器的传质系数对于其设计、优化及放大操作均具有重要意义。本研究采用缩颈式圆形喷嘴,以动态溶氧法对射流鼓泡反应器内的液相体积传质系数进行测定,考察了表观气速、射流雷诺数对液相体积传质系数的影响。研究发现,随气速增大液相体积传质系数的变化规律为先增大而后保持不变。维持表观气速不变,随雷诺数增加液相体积传质系数增大,但当表观气速小于0.0012 m/s时,雷诺数对传质改善较小。建立了液相体积传质系数的经验关联式,当气体输入功率占总功率56%时,液相体积传质系数最大,气体鼓泡和液体射流的协同作用最强。  相似文献   

9.
何磊  苏毅  揭涛  梁健  唐昭帆  杨冰冰  张世程 《化工进展》2020,39(4):1245-1251
喷射式环流反应器是一种高效的多相反应器,由于其具有良好的传热、传质和混合特性,目前已被广泛应用于生物、化学、制冷和环境保护等工程领域。气液喷射器作为喷射式环流反应器的核心部件之一,其结构尺寸对环流反应器的传质特性和适用环境都具有显著影响。为考察结构尺寸对喷射器性能的影响,本文根据其工作原理,设计了一台模试气液喷射器,并通过冷模试验对其进行性能测试研究。试验结果表明:气液喷射器的引气能力主要取决于其混合喉管与喷嘴出口截面比f3/f1以及喷射器进出口压力降Δpppc,而环流反应器的气含率仅与喷射器的液相射流量和气体引射量有关。相同液相流量条件下,喷射器的最大引射空气量随截面比f3/f1的增大而增大,反应器内的平均气含率随之增加;提高液相射流与引射气体的速度差能够加强两股流体间的剪切作用,使气泡更易发生破碎。当喷射器的气液比大于2.6时,反应器内的混合流体可达到乳化状态。  相似文献   

10.
A pseudo-two-dimensional (2D) model is developed to analyze the operation of platinum-catalyzed microburners for lean propane-air combustion. Comparison with computational fluid dynamics (CFD) simulations reveals that the transverse heat and mass transfer is reasonably captured using constant values of Nusselt and Sherwood numbers in the pseudo-2D model. The model also reasonably captures the axial variations in temperatures observed experimentally in a microburner with a gap size. It is found that the transverse heat and mass transport strongly depend on the inlet flow rate and the thermal conductivity of the burner solid structure. The microburner is surface reaction limited at very low velocities and mass transfer limited at high velocities. At intermediate range of velocities (preferred range of reactor operation), mass transfer affects the microburner performance strongly at low wall conductivities, whereas transverse heat transfer affects stability under most conditions and has a greater influence at high wall conductivities. At sufficiently low flow rates, complete fuel conversion occurs and reactor size has a slight effect on operation (conversion and temperature). For fast flows, propane conversion strongly depends on residence time; for a reactor with gap size of , a residence time higher than 6 ms is required to prevent propane breakthrough. The effect of reactor size on stability depends on whether the residence time or flow rate is kept constant as the size varies. Comparisons to homogeneous burners are also presented.  相似文献   

11.
Local overall gas-liquid volumetric mass transfer coefficient profiles at the specified point were experimentally investigated in a gas-liquid two-phase reversed flow jet loop reactor with Newtonian and non-Newtonian systems. It was observed that the local overall gas-liquid volumetric mass transfer coefficient profiles of this reactor with Newtonian and non-Newtonian systems increase with increase in gas jet flow rates and liquid jet flow rates, and with decrease in nozzle diameter and CMC concentration.  相似文献   

12.
Gas hold-up, mixing intensity of dispersion characterised by exchange flows between adjacent impellers and a volumetric mass transfer coefficient are presented for 18 impeller configurations in triple-impeller vessel of inner diameter . Rushton Turbines, six Pitched Blade impellers pumping down and hydrofoil impellers Techmix 335 (Techmix co., Czech republic) pumping up or down and their combinations were used. aqueous solution was used as a liquid phase, which represents non-coalescent batches. Gas hold-ups and volumetric mass transfer coefficients are presented for individual configurations as functions of specific power dissipated and superficial gas velocity. The regression of the mass transfer coefficients shows large standard deviation (30%). The power number included to the regression to express the impeller configuration effect did not improve the standard deviation significantly (23%). The impeller configurations with low power number (less than unity) provide higher dispersion mixing intensities, while the impeller configurations with high power number provide better mass transfer performance.  相似文献   

13.
A theoretical study of methane steam reforming coupled with methane catalytic combustion in a catalytic plate reactor (CPR) based on a two-dimensional model is presented. Plates with coated catalyst layers of order of micrometers at distances of order of millimetres offer a high degree of compactness and minimise heat and mass transport resistances. Choosing similar operating conditions in terms of inlet composition and temperature as in industrial reformer allows a direct comparison of CPRs with the latter. It is shown that short distance between heat source and heat sink increases the efficiency of heat exchange. Transverse temperature gradients do not exceed across the wall and across the gas-phase, in contrast to difference in temperature of outside wall and mean gas phase temperature inside the tube usually observed in conventional reformers. The effectiveness factors for the reforming chemical reactions are about one order of magnitude higher than in conventional processes. Minimisation of heat and mass transfer resistances results in reduction of reactor volume and catalyst weight by two orders of magnitude as compared to industrial reformer. Alteration of distance between plates in the range 1- does not result in significant difference in reactor performance, if made at constant inlet flowrates. However, if such modifications are made at constant inlet velocities, conversion and temperature profiles are considerably affected. Similar effects are observed when catalyst layer thicknesses are increased.  相似文献   

14.
Knowledge of lateral mixing is essential to understand heat and momentum transfer parameters in both single-phase liquid and two-phase gas-liquid co-current down flow through packed bed columns. The reactors through which gas and liquid concurrently flow downwards through a bed of catalytic packing are called trickle bed reactors. Experimental data on lateral mixing coefficients from both the heat transfer and radial liquid distribution studies are obtained over a wide range of flow rates of gas and liquid using glass spheres (4.05 and 6.75 mm), ceramic spheres (2.59 mm), and ceramic raschig rings (4 and 6.75 mm) as packing materials covering trickle flow, pulse flow, and dispersed bubble flow regimes. In the present work, an expression for estimation of lateral mixing coefficient (αβ)L is derived using the data on radial liquid distribution studies. The agreement between the values of (αβ)L obtained from heat transfer studies and from radial liquid distribution studies using the experimental data shows that there exists an analogy between the heat transfer and radial liquid distribution in packed beds. Since (αβ)L is an important variable for estimation of various heat and mass transfer parameters, a correlation for (αβ)L based on present heat transfer study is proposed. The agreement between the (αβ)L values estimated from the proposed correlation and experimental values is satisfactory with a standard deviation (s.d.) of 0.119.  相似文献   

15.
The influence of the channel radius on the mass transfer in rectangular meandering microchannels (width and height of ) has been investigated for gas-liquid flow. Laser induced velocimetry measurements have been compared with theoretical results. The symmetrical velocity profile, known from the straight channel, was found to change to an asymmetrical one for the meandering channel configuration. The changes in the secondary velocity profile lead to an enhanced radial mass transfer inside the liquid slug, resulting in a reduced mixing length. In the investigated experimental range (superficial gas velocity and superficial liquid velocity ) the mixing time was reduced eightfold solely due to changes in channel geometry. An experimental study on the liquid slug lengths, the pressure drop and their relation to the mass transfer have also been performed. Experimental results were validated by a simulation done in Comsol Multiphysics®. To obtain information for higher velocity rates, simulations were performed up to . These velocity variations in the simulation indicate the occurrence of a different flow pattern for high velocities, leading to further mass transfer intensification.  相似文献   

16.
In the absence of chemical reaction, mass transfer enhancement by suspended particles (mostly activated carbon) at the gas/liquid interface has been frequently reported and is usually explained by a “shuttle mechanism” exerted by particles with a high adsorption capacity for the transfer component. A major problem of this model is that unrealistic enrichment of the solids at the interface as compared to the bulk concentration has to be assumed. A comprehensive study has been carried out in a stirred tank in a wide range of the stirring speed (0-) with 9 different powdered solids suspended in water. With a flat gas/liquid interface, moderately hydrophobic solids significantly increased the mass transfer rates at low solid loadings (0.1-). However, the effect is not limited to particles with a high adsorption capacity for the gas (e.g. activated carbon) but it is observed also for non-porous particles (e.g. graphite or sulphur). When the particles are removed by rinsing, the absorption rates remain high. When the system is kept very clean (surfactant free), the enhancement effect is not observed. Based on these findings, it is concluded that adsorption of surfactants on hydrophobic solids cleans the interface resulting in higher mass transfer coefficients kL.  相似文献   

17.
实验研究了回转干馏炉内非等粒径油页岩与固体热载体颗粒群的混合行为,以回转干馏炉出口油页岩质量分数的样本变异系数作为混合指数。对2种填充率、2种抄板形式、2种倾角在5种转速的不同工况下出口的混合指数进行计算,对比分析了混合指数的变化趋势及不同影响因素的混合机理,得出20%填充率采用直角抄板在倾角为3.24°时混合度优于其它对应工况,以对流混合为主。  相似文献   

18.
三相下喷式环流反应器的传质性能   总被引:2,自引:0,他引:2  
在三相非牛顿型流体体系中,对下喷式环流反应器传质特性进行了实验研究。讨论了表观气速、能量耗散速率、导流筒直径与反应器直径比、喷嘴直径、导流筒下端距反应器底部的距离、固体装填量、羧甲基纤维素钠(CMC)溶液浓度及其流变特性对它的影响。实验结果表明,容积传质系数随表观气速和能量耗散速率的增加有所增加,在实验条件下,发现最优的导流筒直径与反应器直径比在0.4~0.45这一范围、固体装填量大约为3%(体积百分比)、导流筒下端距反应器底部的距离为0.08m左右。同时提出了容积传质系数的经验关联式。  相似文献   

19.
The effect of particle diameter on the gas-particle two-phase compound round jet is numerically analyzed by the three-dimensional vortex method presented in a prior study. The air jet issues from a round nozzle into the co-flowing air stream, where the Reynolds number based on the air velocity at the nozzle exit is 2×104 and the velocity ratio between the co-flowing stream and the jet at the nozzle exit is 0.27. The flow direction is vertical downward. Spherical glass particles having diameters 60, 80 and are loaded from the nozzle. The mass loading ratio is 0.27. The analysis made clear the air turbulent modulations due to the particles, such as the relaxation of velocity decay, the increment and decrement of momentum diffusion at the developing and developed regions, respectively. It also clarified that the air turbulent modulations become markedly as the particle diameter decreases.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号