首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
We fabricated blue polymer light‐emitting diodes (PLEDs) with indium tin oxide (ITO)/PEDOT : PSS/PVK/PFO‐poss/LiF/Al structures. All of the organic film layers were prepared by the spin‐coating method on plasma and heat‐treated ITO/glass substrates. The dependences of the optical and electrical properties of the PLEDs on the plasma and heat treatment of the ITO film and the introduction of poly(N‐vinylcarbazole) (PVK) layer were investigated. The AFM measurements indicated that the surface roughness of the ITO transparent film was improved by the plasma and heat treatment. In the emission spectra, the intensity of the excimer peaks of the PFO‐poss [polyhedral oligomeric silsesquioxane‐terminated poly(9,9‐dioctylfluorene)] emission layer were decreased for the PLED device with the PVK film layer compared with the one without the PVK layer. The maximum current density, luminance and current efficiency of the PLEDs were found to be about 470 mA/cm2, 486 cd/m2 at an input voltage of 12 V and 0.55 cd/A at 100 cd/m2 in luminance, respectively. The color coordinates (CIE chart) of the blue PLEDs were in the range of x = 0.17 ~ 0.20, y = 0.13 ~ 0.16, and the peak emission spectrum was about 430 nm, showing a good blue color. © 2008 Wiley Periodicals, Inc. J Appl Polym Sci, 2008  相似文献   

2.
The effects of solution processing on the photovoltaic response of poly(n‐vinyl carbazole) (PVK) films were investigated. PVK films were formed by spincasting onto glass coated with indium tin oxide (ITO) and poly(3,4‐ethylenedioxythiophene) (PEDOT)–polystyrenesulfonate (PSS). Some of the PVK films were redissolved in chlorobenzene and redried in the absence or presence of an electric field. Illuminated current–voltage characteristics were measured for an ITO/PEDOT:PSS/PVK/Ca:Al device. Films spincast from a 50 mg/mL solution, redissolved, and dried in the absence of the electric field exhibited a 26% higher charge collection efficiency than films dried in the presence of the electric field. The increased charge collection efficiency was attributed to changes in the molecular configuration of the PVK films. © 2010 Wiley Periodicals, Inc. J Appl Polym Sci, 2010  相似文献   

3.
Three new soluble vinylene‐copolymers F , C, and P that contain 4‐(anthracene‐10‐yl)‐2,6‐diphenylpyridine as common segment and fluorene, carbazole, or phenylene, respectively, as alternating segment were prepared by Heck coupling. The glass transition temperature was high for F and C (110 and 117°C), whereas was lower than 25°C for P . The polymers were stable up to ~ 300°C. They emitted blue–green light with maximum located at wavelength of 456–550 nm, which was of the order F < C < P . The photoluminescence quantum efficiency in THF solution was ~ 30% for F and P and only 5% for C . All three copolymers were used as active layers for polymer light emitting diodes (PLEDs) and organic photovoltaic cells. The double PLEDs with configuration of indium‐tin oxide (ITO)/poly(ethylenedioxythiophene (PEDOT) : poly(styrenesulfonate)(PSS)/Copolymer F , C , or P /TPBI(1,3,5‐tris(2‐N‐phenylbenzimidazolyl)benzene)/Ca/Al were fabricated. Copolymer P emitted green light with maximum brightness of 28 cd/m2 and a current yield of 0.85 cd/A. Organic photovoltaics with the configuration of ITO/PEDOT : PSS/Copolymer and [6,6]‐phenyl‐C61‐butyric acid methyl ester blend (1 : 1) /Ca/Al were also fabricated. Copolymer P showed the highest power conversion efficiency of 0.034%. © 2009 Wiley Periodicals, Inc. J Appl Polym Sci, 2010  相似文献   

4.
A copolymer of dendronized poly(p‐phenylene vinylene) (PPV), poly{2‐[3′,5′‐bis (2′‐ethylhexyloxy) bnenzyloxy]‐1,4‐phenylene vinylene}‐co‐poly[2‐methoxy‐5‐(2′‐ethylhexyloxy)‐1,4‐phenylene vinylene] (BE‐co‐MEH–PPV), was synthesized with the Gilch route to improve the electroluminescence and photovoltaic properties of the dendronized PPV homopolymer. The polymer was characterized by ultraviolet–visible absorption spectroscopy, photoluminescence spectroscopy, and electrochemical cyclic voltammetry and compared with the homopolymers poly{2‐[3′, 5′‐bis(2‐ethylhexyloxy) benzyloxy‐1,4‐phenylene vinylene} (BE–PPV) and poly[2‐methoxy‐5‐(2′‐ethylhexyloxy)‐1,4‐phenylenevinylene] (MEH–PPV). Polymer light‐emitting diodes based on the polymers with the configuration of indium tin oxide (ITO)/poly(3,4‐ethylene dioxythiophene) : poly(styrene sulfonate) (PEDOT : PSS)/polymer/Ca/Al were fabricated. The electroluminescence efficiency of BE‐co‐MEH–PPV reached 1.64 cd/A, which was much higher than that of BE–PPV (0.68 cd/A) and a little higher than that of MEH–PPV (1.59 cd/A). Photovoltaic properties of the polymer were studied with the device configuration of ITO/PEDOT : PSS/polymer : [6,6J‐phenyl‐C61‐butyric acid methyl ester] (PCBM)/Mg/Al. The power conversion efficiency of the device based on the blend of BE‐co‐MEH–PPV and PCBM with a weight ratio of 1 : 3 reached 1.41% under the illumination of air mass 1.5 (AM1.5) (80 mW/cm2), and this was an improvement in comparison with 0.24% for BE–PPV and 1.32% for MEH–PPV under the same experimental conditions. © 2007 Wiley Periodicals, Inc. J Appl Polym Sci, 2008  相似文献   

5.
A new electroluminescent copolymer [poly(1,5‐di(3,5‐dimethyloxystyrylene)naphthalene‐block‐tri(ethylene oxide)) (DSN–TEO)], containing alternating rigid, conjugated light‐emitting units and flexible tri(ethylene oxide) ionic conductive units, was synthesized via the Wittig reaction. The polymer has fairly good solubility in chloroform, tetrahydrofuran, toluene, etc, and excellent film‐forming ability. The decomposition temperature and the glass transition temperature were 409 °C and 42.2 °C, respectively. A light‐emitting diode (LED) device with configuration ITO/PEDOT–PSS/DSN–TEO/Ca(Al) and light‐emitting electrochemical cell (LEC) device with ITO/DSN–TEO + PEO (LiTf)/Al were prepared, and the photoluminescence and electroluminescence (EL) properties were investigated. Efficient blue‐green light emission (EL maximum emissive wavelength at 508 nm) was found with onset voltage at 6 V. The maximum light efficiency was 0.107 cd A?1 at 20 V for LED, and the onset voltage 2.5 V and the maximum light efficiency was 4.2 cd A?1 at 2.8 V for LEC, respectively. The response time of the LEC was less than 5 s. The EL efficiency of LEC device was improved by 44 as compared with the relative LED device. © 2003 Society of Chemical Industry  相似文献   

6.
A new conjugated light‐emitting AB copolymer containing alternating fluorene and naphthalene units, poly{(9,9‐di‐n‐octylfluorenediyl vinylene)‐alt‐[1,5‐(2,6‐dioctyloxy)naphthalene vinylene]} (PFV‐alt‐PNV), was synthesized via Horner‐Emmons polymerization. The polymer is completely soluble in common organic solvents and exhibits good thermal stability up to 400 °C. UV‐visible, fluorescence and photoluminescence measurements of the copolymer show peak maxima at 427, 500 and 526 nm, respectively. A light‐emitting device containing the new polymer was fabricated using a simple indium tin oxide configuration: (ITO)/PEDOT:PSS/PFV‐alt‐PNV/Al. Measurements of current versus electric field were carried out, with an onset of light emission occurring at 2.5 V. The electroluminescence brightness was observed to reach a maximum of 5000 cd m?2. Copyright © 2011 Society of Chemical Industry  相似文献   

7.
Two soluble conjugated polyfluorenes, poly{9,9‐dioctylfluorene‐2,7‐diyl‐co‐4,4′‐bis[2‐(4‐phenyl)‐2‐cyanovinyl]triphenylamine}(PF‐BCT) and poly{9,9‐dioctylfluorene‐2,7‐diyl‐co‐3,6‐bis[2‐(4‐phenyl)‐2‐cyanovinyl]‐9‐octyl carbazole}(PF‐BCC), have been synthesized from 2,7‐dibromo‐9,9‐dioctylfluorene and 4,4′‐bis[2‐(4‐bromophenyl)‐ 2‐cyanovinyl]triphenylamine or 3,6‐bis[2‐(4‐bromophenyl)‐2‐cyanovinyl]‐9‐octyl carbazole comonomers through a Suzuki polymerization reaction. The copolymers are characterized by gel permeation chromatography, elemental analysis, thermogravimetric analysis. The polymers have good thermal stability with 5 wt % loss temperatures of more than 380°C. Cyclic voltammetry measurements show that the polymers present good electron and hole‐injection abilities. PF‐BCC possesses higher oxidization potential than that of PF‐BCT, which indicates that PF‐BCT has better hole injection ability. The photophysical properties of the polymers are investigated in both solutions and spinning‐coated films. Compared to that of PF‐BCC, the absorption and emission peaks of PF‐BCT bathochromic shift in the solid film or solution states. Single layer light‐emitting devices have been fabricated in the ITO/PEDOT: PSS/polymer/Ca/Al configuration. The electroluminescence (EL) device based on PF‐BCT shows yellow emission with the current efficiency of 0.21 cd/A, while PF‐BCC shows greenish yellow emission with the current efficiency of 0.08 cd/A. In addition, to improve the electroluminescence of PF‐BCC, a PVK layer is introduced, the brightness and efficiency get improved to 700 cd/m2 and 0.12 cd/A, respectively. © 2008 Wiley Periodicals, Inc. J Appl Polym Sci, 2009  相似文献   

8.
We report polymer solar cells (PSCs) based on poly(3‐hexylthiophene (P3HT) and [6,6]‐phenyl‐C61‐butyric acid methyl ester (PCBM) using water‐soluble nickel acetate (Ni(CH3COO)2, NiAc) instead of acidic poly(3,4‐ethylenedioxythiophene) : poly(styrenesulfonate) (PEDOT : PSS) as hole collection layer (HCL) between the indium tin oxide (ITO) electrode and photoactive layer. The NiAc layer can effectively decrease Rs and increase Rp and shows effective hole collection property. Under the illumination of AM1.5G, 100 mW/cm2, the short‐circuit current density (Jsc) of the NiAc based device (ITO/NiAc/P3HT : PCBM/Ca/Al) reach 11.36 mA/cm2, which is increased by 11% in comparison with that (10.19 mA/cm2) of PEDOT : PSS based device (ITO/PEDOT : PSS/P3HT : PCBM/Ca/Al). The power conversion efficiency of the NiAc based devices reach 3.76%, which is comparable to that (3.77%) of the device with PEDOT : PSS HCL under the same experimental conditions. Moreover, NiAc based PSCs show superior long‐term stability than PEDOT : PSS based PSCs. Our work gives a new option for HCL selection in designing more stable PSCs. © 2012 Wiley Periodicals, Inc. J. Appl. Polym. Sci., 2013  相似文献   

9.
Two fluorescent monomers N‐phenyl‐N‐(4‐vinylphenyl)pyren‐1‐amine (vinyl‐PyPA) and 1‐vinyl pyrene (VPy) were synthesized in good yields. A series of soluble conductive vinyl copolymers P(PyPA‐co‐VPy) containing vinyl‐PyPA and VPy moieties in different composition ratios were prepared by free radical solution polymerization. These copolymers showed high Tg (190?201 °C) and good thermal stability. The photoluminescence emission maxima of the copolymers were all in the range 474.5?478.5 nm, which was similar to the poly(N‐phenyl‐N‐(4‐vinylphenyl)pyren‐1‐amine) (P(PyPA)) (475 nm) but blue shifted compared with poly(1‐vinyl pyrene) (PVPy) (490.5 nm). The lifetime of the copolymers increased from 10.2 to 29.7 ns with an increase in pyrene content. The copolymers had higher quantum yields (0.51) than those of the homopolymers of P(PyPA) (0.48) and PVPy (0.13). The highest occupied molecular orbital of the copolymers remained relatively unchanged from P(PyPA), while the lowest unoccupied molecular orbital varied from ?2.41 eV to ?2.51 eV with an increase in pyrene ratio in the copolymers. The energy bandgaps of the copolymers (from 2.70 eV to 2.81 eV) were smaller than those of P(PyPA) (2.82 eV) and PVPy (3.47 eV). Two polymer light‐emitting diode (PLED) series were attempted including indium tin oxide (ITO) (fluorocarbon (CFx) treated)/P(PyPA‐co‐VPy)/LiF/Al and ITO(CFx treated)/P(PyPA‐co‐VPy)/1,3,5‐Tri(1‐phenyl‐1H‐benzo[d]imidazol‐2‐yl)phenyl (TPBi)/LiF/Al. The results suggested that the PyPA moiety is hole conducting and the PLEDs can achieve high luminance from 650 to 1150 cd m?2 (at 100 mA cm?2) only when an electron injecting layer TPBi is employed. © 2013 Society of Chemical Industry  相似文献   

10.
Two novel copolymers of polyfluorenes/poly(p‐phenylenevinylene)s copolymers with ptert‐butyl‐phenylenemethylene groups in the C‐9 position of alternating fluorene unit, poly[1,4‐(2,5‐dibutyloxyl)‐phenyleneviny lene‐alt‐9‐(ptert‐butyl‐phenylenemethylene)fluorene] and poly[1,4‐(2,5‐dioctyloxyl)‐phenylenevinylene‐alt‐9‐(ptert‐butyl‐phenylenemethylene)fluorine], have been synthesized via the Heck polycondensation reaction. The synthesized polymers were characterized by FTIR, NMR, DSC, TGA, UV–vis, and PL spectra. The polymers showed high glass transition temperatures and good thermal stability. A polymer light‐emitting diode with the configuration ITO/PEDOT:PSS/P2/Ca/Al has been fabricated. The device emitted a yellow light with a peak wavelength of 578 nm similar to the PL spectra of the copolymer film. A maximal luminance of 534 cd/m2 was obtained at a driving voltage of 24.5 V. © 2006 Wiley Periodicals, Inc. J Appl Polym Sci 102: 3955–3962, 2006  相似文献   

11.
Poly(p‐styrene sulfonate‐co‐acrylic acid sodium) (PSA) from the copolymerization of acrylic acid sodium and p‐styrene sulfonate monomers were used to dope poly(3,4‐ethylene dioxythiophene) (PEDOT) to generate PEDOT–PSA antistatic dispersions. Compared to those of the PEDOT–poly(p‐styrene sulfonate sodium) (PSS), the physical and electrical properties of the PEDOT–PSA conductive liquids were much better. The PEDOT–PSA films possessed a better water resistance without a decrease in the conductivity. The sheet resistance of the PEDOT–PSA–poly(ethylene terephthalate) (PET) films was about 1.5 × 104 Ω/sq with a 100 nm thickness, the same as the PEDOT–PSS–PET films. The transmittance of the PEDOT–PSA–PET films exceeded 88%. Furthermore, the environmental dispersity of the PEDOT–PSA antistatic dispersion was apparently improved by the dopant PSA so that the stability was extraordinarily promoted. Meanwhile, the water resistances of the PEDOT–PSA–PET and PEDOT–PSA films were also enhanced. © 2017 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2017 , 134, 45163.  相似文献   

12.
Tik H. Lee  K.M. Lai  Louis M. Leung   《Polymer》2009,50(19):4602-4611
A series of soluble conductive vinyl copolymers containing a hole-transporting N-(4-methoxyphenyl)-N-phenylnaphthalen-1-amine (MeONPA) moiety and an electron-transporting/hole-blocking 2,5-diphenyl-1,3,4-oxadiazole (OXA) moiety at different composition ratios were synthesized and characterized. The copolymers were applied as the hole-transporting layer (HTL) for a series of heterojunction Organic Light-emitting Diodes (OLEDs) employing the commonly used green emitter tris(8-hydroxyquinolinato)aluminum (AlQ3) as the electron-transporting layer. AlQ3 is known to have inferior electron mobility compared to most typical hole-transporting materials. As a result, oxidative degradation of the AlQ3 emitters caused by the excessive holes accumulated at the interface led to deterioration of the device over time. From the measurement of hole current only devices using electron blocking gold as cathode (ITO/PEDOT:PSS/copolymer/Au), it was found that the hole current for the copolymers reduced as the OXA composition increased. Optimum performance for the AlQ3-based OLED (ITO/PEDOT:PSS/copolymer/AlQ3/Ca/Al) was achieved for a 82/18 (molar ratio) (MeONPA/OXA) copolymer. The maximum current efficiency and luminance were 4.2 cd/A and ca 24,000 cd/m2 respectively for the charge-balanced copolymer compared to 3.5 cd/A and 6600 cd/m2 for similar device employing a homopolymer P(MeONPA) as the HTL.  相似文献   

13.
The electrical and optical properties of organic light‐emitting diodes (OLEDs) are demonstrated by varying the length of the alkyl chain of a fluorinated self‐assembled monolayer (F‐nSAM). OLEDs containing F‐nSAMs that have a long alkyl chain length were found to exhibit excellent properties in terms of current density, luminance, turn‐on voltage, etc. The obtained current density at 6 V, which was the highest measurement voltage, was up to about 36 times higher for an OLED including an F‐12SAM thin film with the longest chain length than for an OLED including only an indium tin oxide (ITO) substrate. With regard to luminance characteristics depending on voltage, the luminance was about 13 times higher for the OLED including the F‐12SAM thin film than for the OLED including only the ITO substrate. Also, the turn‐on voltage of the OLED including the F‐12SAM thin film was decreased by approximately 1 V compared to that of the OLED including only the ITO substrate. Although F‐nSAMs with alkyl chains have insulating film properties, F‐nSAMs with long alkyl chains exhibited good electrical and optical properties because of an improvement in the hole‐injection barrier due to a large positive shift of the vacuum level and smooth carrier injection resulting from a high contact angle due to strong hydrophobic properties caused by the good alignment properties of F‐nSAMs resulting from strong van der Waals forces between the molecules due to the long alkyl chains. © 2019 Society of Chemical Industry  相似文献   

14.
In this paper, Metal–organic framework (MOF) derivatives are introduced, and their optical and electrical properties have been investigated. The effect of Au-SH-SiO2 nanoparticles (NPs) supported on the metal–organic framework (Au-SH-SiO2@Cu-MOF) as a new electron injection layer (EIL) for organic light emitting diodes (OLEDs) was studied. Devices with fundamental structure of ITO/PEDOT:PSS (55 nm)/PVK (60 nm)/MEHPPV (30 nm)/MOFs (25 nm)/Al (150 nm) were fabricated. A device fabricated with Au-SH-SiO2@Cu-MOF as an electron injection layer (EIL) showed a lower driving voltage and a higher luminescence efficiency than a device with SH-SiO2@Cu-MOF and a device with Cu-MOF.  相似文献   

15.
A series of conjugated (poly{N‐(2‐ethylhexyl)‐3,6‐carbazole–vinylene‐alt‐[(2,5‐bisphenyl)‐1,3,4‐oxadiazole]}) and nonconjugated (poly{N‐(2‐ethylhexyl)‐3,6‐carbazole–vinylene‐alt‐[(2,5‐bisphenol)‐1,3,4‐oxadiazole]}) and poly{9,9‐dihexyl‐2,7‐fluorene–vinylene‐alt‐[(2,5‐bisphenol)‐1,3,4‐oxadiazole]}) polymers containing oxadiazole and carbazole or fluorene moieties in the polymer backbone were synthesized with a multiple‐step procedure. The properties of the polymers, including the photophysical and electrochemical characteristics, could be fine‐tuned by adjustment of the components or structures in the polymer chains. The polymers were used to examine the hole‐injection/transport behavior as hole‐injection/hole‐transport layers in double‐layer indium tin oxide (ITO)/polymer/aluminum tris(8‐hydroxyquinoline)/LiF/Al devices by the determination of their energy levels. The effects of the polymers in these devices on the charge‐transport behavior were compared with a control device fabricated with poly(ethylenedioxythiophene) (PEDOT)–poly(styrene sulfonate) (PSS). Devices containing the synthesized polymers showed comparable adhesion to the ITO anode and good hole‐injection/transport performance. In addition, they exhibited higher electroluminescence over an identical range of current densities than the control device. This was attributed to the prevention of radiative exciton quenching caused by the PEDOT–PSS interfaces and the improvement of electron/exciton blocking due to the higher electron affinity of the synthesized polymers. © 2010 Wiley Periodicals, Inc. J Appl Polym Sci, 2011  相似文献   

16.
Jung-Feng Lee 《Polymer》2009,50(12):2558-288
A novel series of blue and yellowish-green light-emitting single polymers were prepared by end-capping of low contents of 4-bromo-7H-benzo [de]naphtha[2′,3′:4,5]imidazo[2,1-a]isoquinolin-7-one (M1) into polyfluorene. Electroluminescence (EL) spectra of these polymers exhibit blue emission (λmax = 430/460 nm) from the fluorene segments and yellowish-green emission (λmax = 510/530 nm) from the M1 units. For the polymer (PFNAP-0.06) with the M1 unit content of 0.06 mol-%, its EL spectrum shows balanced intensities of blue emission and yellowish-green emission with Commission Internationale de l'Eclairage (CIE) coordinates of (0.25, 0.34). The maximum brightness of the device prepared from the polymer (PFNAP-0.06) is 6704 cd/m2 at 10 V with a structure of indium tin oxide (ITO)/poly(3,4-ethylenedioxythiophene):poly(styrene sulfonic acid) [PEDOT:PSS]/PVK/emission layer/Ca/Ag. A new white polymer-light-emitting-diode (WPLED) can be developed from the single polymer (PFNAP-0.06) system blended with a red phosphorescent iridium complex [Bis(2-[2′-benzothienyl)-pyridinato-N,C3′] iridium (acetylacetonate) (BtpIr)]. We were able to obtain a white-light-emission device by adjusting the molar ratio of BtpIr to PFNAP-0.06 with a structure of indium tin oxide (ITO)/poly(3,4-ethylenedioxythiophene):poly(styrene sulfonic acid) [PEDOT:PSS]/PVK/emission layer/Ca/Ag. The brightness in such a device configuration is 4030 cd/m2 at 9 V with CIE coordinates of (0.32, 0.34).  相似文献   

17.
A new soluble fluorescent polymer, poly[2‐decyloxy‐5‐(2′‐(6′‐dodecyl‐oxy)naphthyl)‐1,4‐phenylenevinylene] (DDN‐PPV), with no tolane‐bisbenzyl (TBB) structure defects is prepared by the dehydrohalogenation of 1,4‐bis(bromomethyl)‐2‐decyloxy‐5‐(2′‐(6′‐dodecyloxy)naphthyl)benzene (as monomer) in this study. The aforementioned monomer is synthesized via such chemical reactions as alkylation, bromination, and Suzuki coupling reactions. The structure and properties of the DDN‐PPV are examined by 1H NMR, FTIR, UV/vis, TGA, photoluminescence (PL), and electroluminescence (EL) analyses. The two asymmetric decyloxy and 6′‐dodecyloxynaphthyl substituents on the phenylene ring make the DDN‐PPV soluble in organic solvents and eliminate the TBB structure defects. With the DDN‐PPV acting as a light‐emitting polymer, a device is fabricated with a sequential lamination of ITO/PEDOT/DDN‐PPV/Ca/Ag. The EL spectrum of the device shows a maximum emission at 538 nm. The turn on voltage of the device is about 16.6 V. Its maximum brightness is 14 cd/m2 at a voltage of 18.2 V. © 2006 Wiley Periodicals, Inc. J Appl Polym Sci 103: 2734–2741, 2007  相似文献   

18.
Poly(3,4‐ethylenedioxythiophene) doped with poly(styrenesulfonate) (PEDOT–PSS) was blended with poly(vinyl alcohol) (PVA) to form 0, 10, 20, 30, 40, and 50 vol % PEDOT–PSS/PVA solutions, and their freestanding films were prepared with a simple and cost‐effective solution casting technique at 27 °C in the absence of additives. Field emission scanning electron microscopy images revealed changes in the cocontinuous network to a rodlike morphology in the composite films from 10 to 50 vol % PEDOT–PSS/PVA. The alternating‐current conductivity was found to obey Jonscher's power law. The obtained values of the dielectric constant at 27 °C were relatively high, and a maximum value of 6.7 × 104 at 100 Hz for 40 vol % PEDOT–PSS'/PVA was observed. The dielectric loss attained a maximum value of about 106 at 100 Hz for 40 vol % PEDOT–PSS/PVA. However, a decrease in the dielectric parameters was observed at 50 vol % PEDOT–PSS/PVA because of locally induced strain in the microstructure. The variations in polarization with respect to the applied electric field (P–E) were determined for 50, 100, and 500 Hz at 500 V for the freestanding composite films of lower concentrations up to 20 vol % PEDOT–PSS/PVA. In summary, the dielectric and P–E measurements confirmed that the electrical characteristics changed in accordance to the contribution from both resistive and capacitive sites in the PEDOT–PSS/PVA composites. © 2017 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2017 , 134, 45079.  相似文献   

19.
Two soluble fluorescent polymers, poly(2‐decyloxy‐5‐(4′‐tert‐butylphenyl)‐1,4‐phenylenevinylene) (DtBP‐PPV) and poly(2‐decyloxy‐1,4‐phenylenevinylene) (DO‐PPV), were prepared by a method similar to the Gilch procedure. The DtBP‐PPV and DO‐PPV have a same chemical structure except for the conjugated tert‐bytulphenyl substituents in the former. The polymers are characterized by using 1H NMR, FTIR, UV–vis, photoluminescence (PL), and electroluminescence (EL) spectroscopies and thermogravimetric analysis (TGA). The 1H NMR spectra show no tolane‐bis‐benzyl (TBB) structure defects in DtBP‐PPV but some in DO‐PPV. Both UV–vis absorption and PL emission peaks of the DtBP‐PPV exhibit a red‐shift phenomenon as compared with those of the DO‐PPV. Moreover, with the DtBP‐PPV and DO‐PPV acting as light‐emitting polymers separately, EL devices were fabricated with a sequential lamination of ITO/PEDOT/DtBP‐PPV (or DO‐PPV)/Ca/Ag. The DtBP‐PPV‐based device shows a lower turn‐on voltage, a longer EL emission wavelength, and a higher brightness than the DO‐PPV‐based device. The maximum brightness of DtBP‐PPV‐based device is 57 cd/m2 at an applied voltage of 12 V. POLYM. ENG. SCI., 47:1380–1387, 2007. © 2007 Society of Plastics Engineers  相似文献   

20.
Two new poly(p‐phenylenevinylene) (PPV) derivatives containing oxadiazole moiety (OXA‐PPV1 and OXA‐PPV2) were synthesized by the Wittig condensation polymerization reaction. Their thermal and light‐emitting properties were investigated. The single‐ and triple‐layer electroluminescent (EL) devices with configurations of ITO/polymer/Al and ITO/polymer/OXD‐7/Alq3/Al were fabricated. They exhibited blue emission at 470 nm for OXA‐PPV1 and green emission at 560 nm for OXA‐PPV2. The turn‐on voltages of triple‐layer device were 11 V for OXA‐PPV1 and 8 V for OXA‐PPV2. The triple‐layer EL devices showed much better performance than did the single‐layer devices. The spectra indicated energy transfer occurred from segments of side chain to polymer backbone. © 2002 Wiley Periodicals, Inc. J Appl Polym Sci 85: 422–428, 2002  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号