首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
反硝化除磷系统可实现氮、磷的同步去除,但在处理实际低C/N污水时,常需补充碳源以解决碳源不足的问题。采用A2/O-BCO(anaerobic anoxic oxic-biological contact oxidation)反硝化除磷系统,通过投加两种常用的外碳源控制进水C/N在4.3左右,考察碳源类型(丙酸钠、乙酸钠)对A2/O-BCO系统长期运行效果的影响,并采用批次试验进一步探究不同外加碳源条件下活性污泥的内碳源贮存和利用特性。结果表明:碳源种类的变化会改变微生物的底物贮存和利用特性,进而影响系统的脱氮除磷效果。当采用丙酸钠为外加碳源时,PO43--P去除效果稳定在94%左右,实现了磷的高效去除,但TIN的去除率仅为70.82%;而以乙酸钠为外加碳源时,系统TIN的平均去除率可以达到74%,但磷的出水浓度出现波动现象,平均去除率仅为89.90%。碳源转化分析表明,厌氧条件下,进水丙酸钠含量增多,PHV的合成比例增加,相反,乙酸钠含量增多,PHB合成比例增多;缺氧条件下,DPAOs对PHB和PHV的降解效果与其含量相关,丙酸钠作为外碳源时,PHV的降解速率高且微生物产能效率高,因此PO43--P吸收速率较快。此外,本文提出了不同外加碳源条件下系统的优化运行策略。  相似文献   

2.
采用厌氧/好氧/缺氧模式运行的SBR工艺处理模拟城市污水,考察外加碳源乙酸钠和污泥水解酸化上清液对其脱氮除磷效果的影响。模拟城市污水,进水水质COD为400 mg/L、氨氮为60 mg/L、磷酸盐为7 mg/L。结果表明:不投加碳源时,系统对COD、氨氮、磷酸盐的去除率分别为90%、91%、82%;乙酸钠投加量为60 mg/L的条件下,外加乙酸钠系统对COD、氨氮、磷酸盐的去除率分别为93%、100%、100%,磷的去除主要是通过好氧聚磷作用;上清液投加量折合进水COD为30 mg/L时,外加污泥水解酸化上清液系统对COD、氨氮、磷酸盐的去除率分别为97%、99%、95%,系统中出现明显的反硝化除磷现象,反硝化除磷占24%。  相似文献   

3.
不同碳源类型对活性污泥PHA贮存及转化的影响   总被引:4,自引:0,他引:4       下载免费PDF全文
采用经乙酸钠驯化培养的具有吸放磷功能的活性污泥,考察了不同碳源类型对厌氧底物贮存和转化的影响,碳源包括乙酸/丙酸=1/2、乙酸/丙酸=2/1、丙酸、甲醇、乙醇、葡萄糖、淀粉及生活污水。试验结果表明,以乙酸和丙酸为碳源时,系统的底物贮存量较大,其中进水乙酸/丙酸=1/2条件下系统内PHA及PHB含量最多,为6.0mmolC.L-1及4.25mmolC.L-1,而乙酸/丙酸=2/1条件下PHV含量最多,为3.69mmolC.L-1。系统可以利用甲醇、乙醇、葡萄糖、淀粉及生活污水作为碳源物质进行底物贮存,贮存物以PHB为主,但贮存量较乙酸及丙酸低。以乙酸及丙酸为碳源时,磷的释放量随着丙酸含量的增加而升高,丙酸为单一碳源条件下,磷的释放量达到最大值,为16.53mg.L-1。以淀粉及生活污水为碳源时释磷量小,为3.56mg.L-1与6.75mg.L-1,而甲醇、乙醇及葡萄糖为碳源时考察的活性污泥没有表现明显的释磷特性。  相似文献   

4.
在厌氧-缺氧-好氧SBR条件下,以乙酸钠作为单一碳源,通过对2个反应器R1、R2中硝酸盐(NO3--N)浓度、磷酸盐(PO43--P)浓度和磷酸盐不同投加时间的控制,研究了胞内聚合物对反硝化和反硝化除磷的驱动关系。结果表明,R1、R2的除磷效率均达到91%以上,且R1的除磷效率和性能比R2较为稳定。R1展示了典型的反硝化除磷过程,缺氧阶段的反硝化除磷的能量来源由聚-β-羟基链烷酸酯(PHA)提供。R2中在缺氧条件下磷酸盐浓度很低(2.63 mg/L)时,硝酸盐浓度随着PHA的降低而减少,其中聚-β-羟基丁酸盐(PHB)的含量明显降低,而聚-β-羟基戊酸盐(PHV)有轻微的减少,并伴有少量糖原质(Gly)的再合成;磷酸盐加入后,PHA与Gly一同作为碳源被消耗,这表明反硝化菌能够利用PHA作为内碳源实现反硝化过程。而R2的PHB合成量少于R1,Gly的合成量和PHV的合成量却高于R1,说明R2的运行条件较R1而言更有利于聚糖菌(GAOs)的生长。  相似文献   

5.
采用乙酸/丙酸交替、葡萄糖、实际生活污水为碳源长期驯化的三个强化生物除磷系统,研究了不同碳源对磷的释放和聚羟基烷酸(PHA)转化的影响、聚磷菌种群结构以及微生物代谢PHA和糖原的厌氧化学计量学。结果表明,从182 d起三个系统均获得稳定的除磷性能,第300 d三个系统内聚磷菌所占全菌的比例分别达到:89%±3%、55%±3%、45%±4%。乙酸、葡萄糖、生活污水为碳源时,聚磷菌细胞内贮存聚羟基丁酸(PHB)和聚羟基戊酸(PHV),丙酸为碳源PHA完全由PHV组成,四种类型碳源都未检测到聚二甲基三羟基戊酸(PH2MV)的生成。计量学研究表明:聚磷菌吸收1 C-mol的乙酸,细胞内合成1.15 C-mol PHB,0.15 C-mol PHV,分解0.47 C-mol糖原;吸收1 C-mol的丙酸生成0.44 C-mol的PHV,分解0.271 C-mol的糖原;吸收1C-mol的葡萄糖生成极少量的PHB和0.16C-mol PHV,分解0.16 C-mol糖原;以实际生活污水为碳源,消耗1 mg的COD,合成0.98 mg PHB、0.13 mg PHV(以COD计)。当以乙酸为碳源时获得最高的厌氧释磷量及最大的释磷速率,分别为:134 mg·L-1和23.80 mg P·(g VSS)-1·h-1。以丙酸与葡萄糖为碳源时释磷速率相似,以生活污水为碳源的情况下释磷速率最小。  相似文献   

6.
对经过长期培养驯化的以NO-2-N为电子受体的反硝化聚磷污泥进行静态烧杯试验,研究了MLSS和温度等因素对反硝化除磷系统处理效果的影响。结果表明,MLSS浓度过高或过低都会影响系统对PO34--P的去除效果,MLSS为4 000 mg/L左右时,系统的除磷效果最佳。系统运行的最佳温度为20℃左右,此时系统对PO34--P的去除率达到了89.14%。  相似文献   

7.
采用厌氧-好氧间歇运行模式,在SBR反应器中分别以丙酸钠、乙酸钠、葡萄糖、蔗糖为单一碳源对生物除磷颗粒污泥进行培养驯化,并考察不同碳源下除磷颗粒污泥对水中磷的去除效果,同时结合高通量测序,探究不同碳源驯化的生物除磷颗粒污泥中微生物种群结构的变化情况。结果证明:碳源为丙酸钠时,系统对磷的去除效果最佳。高通量测序结果表明:碳源对除磷颗粒污泥的微生物种群结构影响显著,以丙酸钠为碳源的颗粒污泥中聚磷菌(PAOs)占比最高;以乙酸钠为碳源的颗粒污泥聚糖菌(GAOs)占比最高;以蔗糖为碳源的颗粒污泥PAOs含量最低,对磷的去除效果最差。  相似文献   

8.
王磊 《山东化工》2023,(14):264-267
针对北方某污水处理厂冬季出水氮磷去除效果不佳的问题,通过外加混合型碳源和除磷剂提高脱氮除磷效果。本研究对不同配比的混合型碳源反硝化速率进行了研究,并研究了水厂投加混合碳源和化学除磷剂后对氮磷的去除效果。通过反硝化小试实验和分析水厂进出水氮磷变化,得出结论:C与N物质的量比7时,以1∶5.5物质的量比混合的葡萄糖和乙酸钠为外加碳源,对活性污泥反硝化能力提升效果最好;在水厂污水中以C与N物质的量比10投加混合型碳源强化生物脱氮,TN去除率提高了25.67%。投加35 mg·L-1的聚合FeCl3和20 mg·L-1的聚合AlCl3辅助除磷,TP去除率提高了10%。出水氮磷达到一级A标准。结论是混合型碳源和化学除磷剂可以有效地帮助冬季低温污水脱氮除磷,在实际应用中具有良好的经济效益。  相似文献   

9.
在SBR反应器中以乙酸钠为碳源、NO_3~--N为电子受体成功富集了反硝化聚糖菌,并采用批次实验进一步考察了进水C/N比(3.3,6.7,10)、电子受体(NO_3~--N、NO_2~--N)、碳源类型(乙酸钠、葡萄糖)对反硝化聚糖菌活性的影响及内碳源转化特性。实验结果表明,进水C/N比越高,系统NO_x~--N去除率越高,厌氧段合成PHB越多,但进水C/N比过高会导致普通反硝化菌占优势,影响内碳源反硝化效率,进水C/N比为6.7较为合适;以NO_3~--N为电子受体长期培养的DGAOs系统未经NO_2~--N驯化,对NO_2~--N同样具有良好的反硝化性能,在投加与NO_3~--N相同浓度的NO_2~--N后,系统NO_x~--N去除率达89.6%;当以葡萄糖为碳源时,DPAOs在厌氧段合成的PHB的量仅为以乙酸钠为碳源时合成PHB量的79.5%,且厌氧段葡萄糖利用率仅为72.8%,远远小于乙酸钠的利用率。  相似文献   

10.
以处理生活污水为目标,开展了温度、碳源浓度及碳源种类对A2SBR反应器中短程反硝化除磷脱氮效果影响研究。实验结果表明:反应系统最佳温度为24℃,碳源浓度为200 mg/L反硝化除磷效果最佳,TP和NO_2~--N的去除率分别达到93.22%和91.36%,与丙酸钠和葡萄糖相比,乙酸钠作为碳源系统反应效果更明显,释磷速率和COD降解速率为3.38 mg PO_4~(3-)-P/(g MLSS·h)和29.66 mg COD/(g MLSS·h)。  相似文献   

11.
为了提高污水脱氮除磷的效率,研究采用序批式反应器(SBR工艺)厌氧、好氧和缺氧(AOA)的运行方式富集反硝化聚磷菌(DPB),实现同步脱氮除磷。结果表明:在好氧段投加甲醇作为碳源(25—40 mg/L)可有效抑制好氧吸磷,对硝化反应影响较小,能够在缺氧段实现同时反硝化脱氮除磷。SBR反应器稳定运行10个月,当进水NH4+-N、PO43--P分别为30,15 mg/L时,总氮(TN)和PO43--P的平均去除率分别为82.5%和92.1%。聚磷菌能够利用硝酸盐作为电子受体,DPB占总聚磷菌的比例达到44.8%。与A2O运行方式相比,AOA运行方式更有利于实现DPB的富集。  相似文献   

12.
低碳源污水的脱氮除磷技术研究进展   总被引:1,自引:0,他引:1  
总结了低碳源污水的主要脱氮策略(外加碳源、优化进水策略、短程硝化反硝化、厌氧氨氧化等),除磷策略(外加碳源、分段进水、生物强化除磷等)以及同步脱氮除磷对策(反硝化除磷、分段进水等)。指出改进现有工艺充分利用进水碳源、外加其他富含有机碳的废物资源、开发寻求碳源需求低的新型脱氮除磷工艺、结合实时在线控制优化系统运行是提高低碳源污水的脱氮除磷效率的较佳途径。  相似文献   

13.
不同C/N对气升式内循环膜反应器的脱氮除磷的影响   总被引:1,自引:0,他引:1  
提出了一种新型的气升式内循环膜反应器的设计构想,利用曝气来实现混合液在厌氧区和好氧区的循环,采用变液位间歇交换模式在厌氧区创造厌氧、缺氧交替环境,通过加强反硝化除磷过程实现污水同步脱氮除磷。对气升式内循环膜反应器进行了初步的研究,考察了不同m(C)/m(N)对脱氮除磷的影响。结果表明,在高的m(C)/m(N)(有机碳源和无机氨氮的质量比)条件下,TN、COD和PO43--P的去除率可以分别达到85%、95%和95%,该反应器需要高含量的碳源;在周期试验表明该反应器中具有反硝化聚磷菌,并且了解到了TN、COD和PO43--P等污染物的去除过程。  相似文献   

14.
采用厌氧-好氧SBR反应器(A/OSBR)处理含磷废水,研究不同温度条件下磷的转化过程及去除机理。结果表明,温度对总磷(TP)和总有机碳(TOC)的去除影响并不明显。TP的去除率均达到95%以上。这主要是由于反硝化除磷过程的发生。反应器中污泥胞内聚合物主要以PHB的形式存在,PHV和PH2MV含量相对较低。而温度对PHB在好氧阶段的消耗的影响并不明显。  相似文献   

15.
不同碳源类型对生物除磷过程释放磷的影响   总被引:2,自引:0,他引:2  
侯红勋  王淑莹  闫骏  彭永臻 《化工学报》2007,58(8):2081-2086
厌氧释放磷是生物除磷的重要部分,释放磷不充分是生物除磷不稳定的主要原因。为了研究碳源种类对厌氧生物除磷的影响,以A2/O氧化沟工艺好氧末端活性污泥为研究对象,投加乙酸钠、丙酸钠、葡萄糖、甲醇和乙醇等碳源,在厌氧和缺氧状态下进行释放磷试验研究。结果表明:(1)在厌氧条件下,聚磷菌(PAOs)以乙酸钠或丙酸钠为碳源释放磷速率很快,120 min平均比释放磷速率分别为290.5和236.7 mg P·(g VSS)-1·d-1;PAOs利用葡萄糖、乙醇和甲醇释放磷速率较低,比释放磷速率分别为49.4、38.8和8.91 mg P·(g VSS)-1·d-1;(2)在缺氧条件下,PAOs以乙酸钠或丙酸钠为碳源释放磷速率与厌氧状态下释放磷速率相差不大,而其他3种碳源作用下,PAOs并不释放磷;(3)初始NO-3过高时,乙酸钠作为碳源,PAOs在释放磷结束后利用NO-3作为电子受体进行反硝化吸收磷。  相似文献   

16.
采用自主设计的悬浮载体生物膜/颗粒污泥耦合装置,利用硝化菌载体生物膜和反硝化聚磷菌颗粒污泥,研究水力停留时间对生物膜/颗粒污泥耦合工艺脱氮除磷的影响,得出最佳工艺参数。试验考查水力停留时间分别为6 h、7 h、8.5 h和10.5 h,结果表明,当水力停留时间为8.5 h时,系统的COD去除率为91.26%,氨氮和总氮的去除率分别为80.68%和70.58%,厌氧释磷速率也较稳定,为0.47 mg P·(g SS)-1·h-1,厌氧释磷速率最高,其碳源利用率最大,反硝化除磷效率最稳定,PO43--P去除率为76.50%,反硝化除磷效率为1.04 mg P·(mg NO-3-N)-1,所以当水力停留时间为8.5 h时,系统具有较高的脱氮除磷效率。当水力停留时间过短时,氮磷的去除不完全,过长时,系统不稳定,系统的最优水力停留时间为8.5 h。  相似文献   

17.
为全面探究反硝化脱氮除磷菌(DPB)的脱氮除磷特性,实验采用SBR反应装置对DPB进行富集筛选,分析碳源浓度及内外碳源对其特性的影响。实验结果显示:污泥经过富集筛选后反硝化聚磷菌比例大增,占传统聚磷菌的比例为80.68%;同时,以乙酸钠作为碳源,在进水COD浓度为250mg/L条件下,反硝化脱氮除磷效果达到最佳;在无外碳源的缺氧条件下,DPB的脱氮除磷效率很低,需添加适量的外碳源,才能保证脱氮除磷特性的正常发挥,过大或过小的外碳源浓度都会对DPB形成抑制作用。  相似文献   

18.
以浙江某污水处理厂2组平行运行的序批式间歇活性污泥工艺(SBR)和厌氧-缺氧-好氧活性污泥工艺(A~2/O)为研究对象,分析2种生物处理工艺的污染物去除性能结果表明,通过控制体系DO的质量浓度在4~6mg/L,SBR和A~2/O其去除率分别达46.5%和52.7%。采用外加碳源(乙酸钠)的方式,将SBR和A~2/O工艺进水COD/ρ(TN)分别控制在8.6和7.2以上,可实现出水TN含量达到GB 18918-2002一级A排放标准。A~2/O工艺通过调整外回流体积比为35%~70%,二沉池混合硝化液回流比为20%~40%的方式,只利用内部碳源,可以保持出水TN含量达到GB 18918-2002一级A排放标准。  相似文献   

19.
采用典型建筑废弃物(废弃粉煤灰砖、红砖等)为吸附剂,研究其对正磷酸盐态磷(PO43--P)的静态吸附特性、作为多级垂直流人工湿地(MVSF-CWs)填料的可行性及不同运行时间与水温条件下的除磷性能。结果表明,粉煤灰砖(粉末)和红砖(粉末)对PO43--P的吸附行为符合Langmuir吸附等温式,利用该式计算出其对PO43--P的吸附容量分别为44.72和35.54 mg/g。MVSF-CWs系统由4级组成,平均水力负荷0.038 m3/(m2·d)、平均水力停留时间16.7 d。MVSF-CWs系统进水TP的质量浓度为(5.83±2.36)mg/L、出水为(0.85±0.48)mg/L,平均去除率为85.4%。各级人工湿地对TP去除的贡献率分别为33.6%、55.8%、2.5%、8.1%,其中第2级(废弃粉煤灰砖为填料)对磷的去除最为显著。不同水温条件下,MVSF-CWs系统除磷结果表明:当水温θ30℃、20℃θ30℃、10℃θ20℃及θ10℃时,TP的平均去除率分别为91.83%、87.52%、82.61%及78.39%。TP去除率随水温下降而降低,表明水温对多级垂直流人工湿地除磷效率有显著影响。  相似文献   

20.
利用驯化好的短程硝化污泥和小球藻结合的藻菌共生光序批式生物膜反应器(PSBBR)处理模拟养猪沼液,探究系统污染物去除效果、外加碳源需求、以及氮转化路径。结果表明,藻菌共生PSBBR的污染物去除效能优于纯污泥反应器,菌藻共生PSBBR运行37 d时,NH_3-N、TN、TP的去除率平均分别为96.25%、93.36%、82.66%,单位体积进水乙酸钠碳源投加量为973.69 mg/L,比传统生物脱氮技术节省碳源约60.5%。分析系统氮转化路径发现,在氮负荷为300 mg/(L·d)稳定运行阶段,NH_3-N去除率约为96.6%,TN去除率约为95.3%,其中约88.5%的氮通过硝化反硝化去除,约6.8%的氮被生物吸收利用。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号