首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 359 毫秒
1.
A series of Al2O3-SnO2 catalysts with the mole ratio of Al2O3 to SnO2 equal to 1:1, 1 0.5, 1 0.1, 1 0.05 and 1 0.01 were characterized by31P NMR of adsorbed trimethyl phosphine (TMP) and119Sn MAS NMR spectroscopy. It was found from31P NMR that no Brønsted acid sites exist in these samples. Pure SnO2 shows two different types of Lewis acid sites; in the mixed oxide samples a Lewis peak characteristic of pure Al2O3 is always seen, together with either one or two other Lewis peaks, depending on the Sn concentration.119Sn CP/MAS NMR spectra of the highest Sn-content sample show one narrow line at –603 ppm superimposed on a very broad line, indicating a strong interaction between Al and Sn oxides.  相似文献   

2.
NO reduction with propylene over Co/Al2O3 and Co–Sn/Al2O3 catalysts has been investigated. For the Co/Al2O3 catalyst, a calcination temperature exceeding 800°C led to a decrease of NO conversion. Calcination of the Co/Al2O3 catalyst at 1000°C resulted in the formation of -Al2O3 and Co3O4. The presence of 20% water vapor showed a significant shift for the maximum NO reduction temperature from 450 to 600°C over Co/Al2O3. It has been found that modification of 6 wt% Co/Al2O3 with 2 wt% Sn significantly enhanced the catalyst thermal stability and improved the inhibitory effect of water on NO conversion and reaction temperature. The promotional effect of Sn on the catalyst thermal stability was attributed to the suppression of the phase transformation from highly dispersed Co2+ species on -Al2O3 to -Al2O3 and Co3O4. The smaller influence of water vapor on NO reduction conversion and temperature over Co–Sn/Al2O3, compared to Co/Al2O3, was attributed to the dispersion effect of Sn species on Co2+ species as well as the involvement of Sn species in NO reduction at a relatively lower temperature. The synergetic effect between the octahedral Co2+ species and -alumina plays a significant role in the catalysis of NO selective reduction by C3H6.  相似文献   

3.
This paper deals with a method of estimating single electrode heat balances during the electrolysis of molten NaCl-ZnCl2 in a cell using a-alumina diaphragm. By measuring the thermoelectric power of the thermogalvanic cells: (T) Na/-alumina/NaCl-ZnCl2/-alumina/Na(T+dT) and (T) C,Cl2/NaCl-ZnCl2/Cl2,C(T+dT) the single electrode Peltier heat for sodium deposition and for chlorine evolution at 370° C were estimated to be –0.026±0.001 JC–1 and+0.614±0.096 J C–1, respectively.  相似文献   

4.
Zusammenfassung Für verschiedene Sauerstoffkonzentrationen von Bleioxidpulver wird die elektrische Leitfähigkeit in Abhängigkeit vom Pressdruck angegeben. Mit abnehmendem Sauerstoffgehalt ist im Bereich zwischen PbO2 und Pb3O4 eine Abnahme der Leitfähigkeit um etwa 16 Zehnerpotenzen zu verzeichnen. Auffallend ist dabei daß der spezifische Widerstand in Abhängigkiet von der Sauerstoffkonzentration eine Stufe aufweist sowie einen Bereich starker Druckabhängigkeit der Leitfähigkeit. Eine Interpretation der Ergebnisse wird im Rahmen bekannter Theorien über die elektrische Leitfähigkeit komprimierter Pulver angegeben. Röntgenstrukturuntersuchungen zeigen die Ausbildung von zwei intermediären Oxiden im untersuchten Bereich:-PbO x mit einer Zusammensetzung von etwax=l.6 und-PbO x mitx=l.46.
The electric conductivity as a function of the applied pressure has been measured for lead oxide powders of various oxygen contents. In the range between PbO2 and Pb3O4 the conductivity decreases by about 16 dec with decreasing oxygen content and shows a plateau between PbO1.7 and PbO1.6. An interpretation of the results is given using known theories of the pressure dependence of powder conductivity. X-ray diffraction analysis shows two intermediate oxides in the observed range:-PbO x at a composition of aboutx=1.6 and-PbO x atx=1.46.
  相似文献   

5.
Vertical electrolysers with a narrow electrode gap are used to produce gases, for example, chlorine, hydrogen and oxygen. The gas voidage in the solution increases with increasing height in the electrolyser and consequently the current density is expected to decrease with increasing height. Current distribution experiments were carried out in an undivided cell with two electrodes each consisting of 20 equal segments or with a segmented electrode and a one-plate electrode. It was found that for a bubbly flow the current density decreases linearly with increasing height in the cell. The current distribution factor increases with increasing average current density, decreasing volumetric flow rate of liquid and decreasing distance between the anode and the cathode. Moreover, it is concluded that the change in the electrode surface area remaining free of bubbles with increasing height has practically no effect on the current distribution factor.Notation A e electrode surface area (m2) - A e,s surface area of an electrode segment (m2) - A e, 1–19 total electrode surface area for the segments from 1 to 19 inclusive (m2) - A e,a anode surface area (m2) - A e,a,h A e,a remaining free of bubbles (m2) - A e,e cathode surface area (m2) - A e,c,h A e,c remaining free of bubbles (m2) - a 1 parameter in Equation 7 (A–1) - B current distribution factor - B r B in reverse position of the cell - B s B in standard position of cell - b a Tafel slope for the anodic reaction (V) - b c Tafel slope for the cathodic reaction (V) - d distance (m) - d ac distance between the anode and the cathode (m) - d wm distance between the working electrode and an imaginary membrane (m) (d wm=0.5d wt=0.5d ac) - d wt distance between the working and the counter electrode (m) - F Faraday constant (C mol–1) - h height from the leading edge of the working electrode corresponding to height in the cell (m) - h e distance from the bottom to the top of the working electrode (m) - I current (A) - I s current for a segment (A) - I 20 current for segment pair 20 (A) - I 1–19 total current for the segment pairs from 1 to 19 inclusive (A) - i current density (A m–2) - i av average current density of working electrode (A m–2) - i b current density at the bottom edge of the working electrode (A m–2) - i 0 exchange current density (A m–2) - i 0,a i 0 for anode reaction (A m–2) - i l current density at the top edge of the working electrode (A m–2) - n 1 parameter in Equation 15 - n s number of a pair of segments of the segmented electrodes from their leading edges - Q g volumetric rate of gas saturated with water vapour (m3 s–1) - Q 1 volumetric rate of liquid (m3 s–1) - R resistance of solution () - R 20 resistance of solution between the top segments of the working and the counter electrode () - R p resistance of bubble-free solution () - R p,20 R p for segment pair 20 () - r s reduced specific surface resistivity - r s,0 r s ath=0 - r s,20 r s for segment pair 20 - r s, r s for uniform distribution of bubbles between both the segments of a pair - r s,,20 r s, for segment pair 20 - T temperature (K) - U cell voltage (V) - U r reversible cell voltage (V) - v 1 linear velocity of liquid (m s–1) - v 1,0 v 1 through interelectrode gap at the leading edges of both electrodes (m s–1) - x distance from the electrode surface (m) - gas volumetric flow ratio - 20 at segment pair 20 - specific surface resistivity ( m2) - t at top of electrode ( m2) - p for bubble-free solution ( m2) - b at bottom of electrode ( m2) - thickness of Nernst bubble layer (m) - 0 ath=0 (m) - 0,i 0 ati - voidage - x,0 atx andh=0 - 0,0 voidage at the leading edge of electrode wherex=0 andh=0 - 0,0 ati b - 0,0 ati=i t - ,h voidage in bulk of solution at heighth - ,20 voidage in bubble of solution at the leading edge of segment pair 20 - lim maximum value of 0,0 - overpotential (V) - a anodic overpotential (V) - c cathodic overpotential (V) - h hyper overpotential (V) - h,a anodic hyper overpotential (V) - h,c cathodic hyper overpotential (V) - fraction of electrode surface area covered by of bubbles - a for anode - c for cathode - resistivity of solution ( m) - p resistivity of bubble-free solution ( m)  相似文献   

6.
Durable anodized coatings having various colours were developed on aluminium by employing a three baths-three processes system, in which electrolyses were conducted in three different baths. The first used either d.c. or a pulse sequence in a single acid, the second d.c. in a mixture of H3PO4 and H2SO4 and the third a.c. in an electrolyte containing boric acid, metal salt and an amine.  相似文献   

7.
The local environments about the rhenium atoms in a Co–Re/-Al2O3 catalyst after different reduction periods have been studied by X-ray absorption spectroscopy (EXAFS). The bimetallic catalyst containing 4.6 wt% cobalt and 2 wt% rhenium has been compared with a corresponding monometallic sample with 2 wt% rhenium on the same support. The rhenium LIII EXAFS analysis shows that bimetallic particles are formed after reduction at 450C with the average particle size being less than 15 Å. More than 6 h reduction at 450C is required for complete reduction of accessible rhenium.  相似文献   

8.
Experimental measurements on free convection mass transfer in open cavities are described. The electrochemical deposition of copper at the inner surface of a cathodically polarized copper cylinder, open at one end and immersed in acidified copper sulphate was used to make the measurements. The effects on the rate of mass transfer of the concentration of the copper sulphate, the viscosity of the solution, the angle of orientation, and the dimensions of the cylinder were investigated. The data are presented as an empirical relation between the Sherwood number, the Rayleigh number, the Schmidt number, the angle of orientation and the ratio of the diameter to the depth of the cylinder. Comparison of the results with the available heat transfer data was not entirely satisfactory for a number of reasons that are discussed in the paper.Nomenclature C b bulk concentration of Cu++ (mol cm–3) - C b bulk concentration of H2SO4 (mol cm–3) - C o concentration of Cu++ at cathode (mol cm–3) - C o concentration of H2SO4 at cathode (mol cm–3) - D cavity diameter (cm) - D diffusivity of CuSO4 (cm2 s–1) - D diffusivity of H2SO4 (cm2 s–1) - Gr Grashof number [dimensionless] (=Ra/Sc) - g acceleration due to gravity (=981 cm s–2) - H cavity depth (cm) - h coefficient of heat transfer (Wm –2 K–1) - i L limiting current density (mA cm–2) - K mass transfer coefficient (cm s–1) - K 1,K 2 parameters in Equation 1 depending on the angle of orientation () of the cavity (see Table 3 for values) [dimensionless] - k thermal conductivity (W m–1 K–1) - L * characteristic dimension of the system (=D for cylindrical cavity) (cm) - m exponent on the Rayleigh number in Equation 1 (see Table 3 for values) [dimensionless] - Nu Nusselt number (=hL * k–1) [dimensionless] - n exponent on the Schmidt number in Equation 1 (see Table 3 for values) [dimensionless] - Pr Prandtl number (=v/k) [dimensionless] - Ra Rayleigh number (defined in Equation 2) [dimensionless] - Sc Schmidt number (=v/D) [dimensionless] - Sh Sherwood number (=KD/D) [dimensionless] - t H+ transference number for H+ [dimensionless] - t Cu++ transference number for Cu++ [dimensionless] - specific densification coefficient for CuSO4 [(1/)/C] (cm3 mol–1) - specific densification coefficient for H2SO4 [(1/)/C] (cm3 mol–1) - k thermal diffusivity (cm2 s–1) - dynamic viscosity of the electrolyte (g cm–1 s–1) - kinematic viscosity of the electrolyte (= /)(cm2 s–1) - density of the electrolyte (g cm–3) - angle of orientation of the cavity measured between the axis of the cavity and gravitational vector (see Fig. 1) [degrees] - parameter of Hasegawaet al. [4] (=(2H/D))5/4 Pr– 1/2) [dimensionless]  相似文献   

9.
Three-arm star polyisobutylene ionomers (¯Mn=8800) with terminal SO3 M (M=K or Ca2) groups were synthesized and their mechanical properties investigated. Compression molded films displayed high elongations, i.e., -1000% for Ca2 ionomers with lower values for the K counterions. Strain induced crystallinity was observed at higher elongations. Mechanical properties in general compared favorably with conventional covalently linked rubbery networks and were comparable and in some cases superior to EPDM-based ionomers carrying randomly distributed SO3 M groups.For the first two parts see Proceedings, 28th IUPAC Macromolecular Symposium, Amherst, MA, July 11–16, 1982, p. 905 and 906  相似文献   

10.
Ni-Mo-P alloy electrodes, prepared by electroless plating, were characterized for application to oxygen evolution. The rate constants were estimated for oxygen evolution on electrodes prepared at various Mo-complex concentrations. The surface area and the crystallinity increase with increasing Mo content. The electrochemical characteristics of the electrodes were identified in relation to morphology and the structure of the surface. The results show that the electroless Ni-Mo-P electrode prepared at a Mo-complex concentration of 0.011 m provided the best electrocatalytic activity for oxygen evolution.List of symbols b Tafel slope (mV dec–1) - b F/RT (mV–1) - F Faraday constant (96 500 C mol–1) - j current density (mA cm–2) - k1 reaction rate of Reaction 1, (mol–1 cm3 s) - k 1 = k1C OH (mol cm–2 s–1) - k 10 rate constant of Reaction 1 at = 0 (mol cm–2 s–1) - kc1 rate constant of Reaction 2 (mol–1 cm3 s–1) - k c1 = kc1C H 2O (mol cm–2 s–1) - kc2 rate constant of chemical Reaction 3 (mol–1 cm2 s–1) - k c2 = kc22 (mol cm–2 s–1) - kc3 rate constant of Reaction 4 (mol–1 cm2 s–1) - Q a anodic capacity (mC) - Q c cathodic capacity (mC) - R gas constant (8.314 J mol–1 K–1) - R ct charge transfer resistance ( cm2) - R ads charge transfer resistance due to adsorption effect ( cm2) - C d1 double layer capacity (mF cm–2) - C ads double layer capacity due to adsorption effect (mF cm–2) - T temperature (K) Greek symbols anodic transfer coefficient - O 2 oxygen overpotential (mV) - saturation concentration of surface oxide on nickel (mol cm–2)  相似文献   

11.
PHTS materials with combined micro- and mesoporosity and with different morphologies were synthesized. PHTS or Plugged Hexagonal Templated Silica is a plugged variant of SBA-15 containing extra silica nanoparticles (plugs) inside the mesoporous channels. Utilising a low amount of TEOS and high stirring and aging temperatures, PHTS-particles with spherical morphology were synthesized for the first time. It was observed that the morphology changed gradually with increasing stirring temperature. It evolved from smooth rods (60C) to rough rods with a deposition of small particles on the surface (70C) and finally to spheres (80C). However, synthesis of materials at a stirring and aging temperature of 80C using larger amounts of silica source (TEOS) did not result in particles with spherical morphology. This demonstrates the profound impact of the amount of silica source, as well as the temperature. The results are explained by means of the cloud point of the surfactant and the balance between the rate of polymerization of the silica source and the rate of mesostructure formation. The prepared PHTS materials were characterized by XRD, N2 sorption and SEM.  相似文献   

12.
This paper presents a mathematical model to calculate the distributions of currenti(x), potentialE(x), gas void fraction (x) and pore electrolyte resistivity (x) within porous flow-through electrodes producing hydrogen. It takes into consideration the following effects: (i) the kinetics of the interfacial charge transfer step, (ii) the effect of the non-uniformly generated gas bubbles on the resistivity of the gas-electrolyte dispersion within the pores of the electrode (x) and (iii) the convective transport of the electrolyte through the pores. These effects appear in the form of three dimensional groups i.e.K=i o L where io is the exchange current density, is the specific surface area of the electrode andL its thickness.= 0 L where 0 is the pore electrolyte resistivity and =/Q where is a constant, =tortuosity/porosity of the porous electrode andQ is the superficial electrolyte volume flow rate within it. Two more dimensionless groups appear: i.e. the parameter of the ohmic effect =K/b and the kinetic-transport parameterI=K. The model equations were solved fori(x),E(x), (x) and (x) for various values of the above groups.Nomenclature specific surface area of the bed, area per unit volume (cm–1) - b RT/F in volts, whereR is the gas constant,T is the absolute temperature (K) - B =[1–(I 2 Z/4)], Equation 9a - C =(1–B 2), Equation 9b - E(L) potential at the exit face (V) - E(0) potential at the entry face (V) - E(x) potential at distancex within the electrode (V) - E rev reversible potential of the electrochemical reaction (V) - F Faraday's constant, 96500 C eq–1 - i o exchange current density of the electrode reaction (A cm–2 of true surface area) - i(L) current density at the exit face (A cm–2 of geometrical cross-sectional area of the packed bed) - I K =i oL(/Q) (dimensionless group), Equation 7d - K =i oL, effective exchange current density of the packed bed (A cm–2) Equation 7a - L bed thickness (cm) - q tortuosity factor (dimensionless) - Q superficial electrolyte volume flow rate (cm3 s–1) - x =position in the electrode (cm) - Z =exp [(0)], Equation 7f - transfer coefficient, =0.5 - =K/b=(i 0 L 0 L)/b (dimensionless group) Equation 7e - (x) gas void fraction atx (dimensionless) - = 0 L, effective resistivity of the bubble-free pore electrolyte for the entire thickness of the electrode ( cm2) - (0) polarization at the entry face (V) - (L) polarization at the exit face (V) - =q/, labyrinth factor - constant (cm3 C–1), Equation 3a - =/Q (A –1) conversion factor, Equation 3b - porosity of the bed - (x) effective resistivity of the gas-electrolyte dispersion within the pores ( cm) - 0 effective resistivity of the bubble-free pore electrolyte ( cm)  相似文献   

13.
A relationship is derived to predict the pressure drop in a two-phase flow system between gas evolving electrodes and in the pipes between the cells. The design equation (dp/dx)=[(1+) n /(1–)](dp L/dx) only requires the flow rates of the gas and liquid and the single-phase (liquid) pressure drop to be known. The equation is compared with other theoretical and empirical prediction methods, and with experimental data.Nomenclature C geometry factor - dB diameter of the departing bubbles (m) - dh hydraulic diameter (m) - ks wall roughness (m) - k L multiplier - L length of electrode in flow direction (m) - n exponent in Equation 16 - p pressure (kg m–1 s–2) - Re Reynolds number - s interelectrode distance (m) - S cross-sectional flow area (m2) - VG, VL volumes of gas and liquid, respectively (m3) - volumetric flow rate of gas and liquid, respectively (m3 s–1) - x coordinate in flow direction (m) - X parameter due to Equation 19 - viscosity (kg m–1 s–1) - fractional surface coverage - friction coefficient - density (kg m–3) - volumetric gas fraction - Thorpe's multiplier, Equation 25 Indices A anode - C cathode - G gas - L liquid - T cell exit  相似文献   

14.
The free convection mass transfer behaviour of horizontal screens has been investigated experimentally using an electrochemical technique involving the measurement of the limiting currents for the cathodic deposition of copper from acidified copper sulphate solutions. Screen diameter and copper sulphate concentration have been varied to provide a range ofSc.Gr from 22×108 to 26×1010. Under these conditions, the data for a single screen are correlated by the equation:Sh=0.375(Sc.Gr)0.305 Results have been compared with previous work on free convection at horizontal solid surfaces where mass transfer coefficients are somewhat lower.Mass transfer coefficients have been measured also for arrays of closely spaced parallel horizontal screens. The mass transfer coefficient was found to decrease with the number of screens forming the array.Symbols and units A area of mass transfer surface, cm2 - C b bulk concentration of ionic species, mol cm–3 - D diffusivity, cm2s–1 - F Faraday number, 96494 C g [equiv–1] - Z number of electrons involved in the reaction - I L limiting current, A - K mass transfer coefficient, cm s–1 - Sh Sherwood number, dK/D - Sc Schmidt number,/D or/D - Gr Grashof numbergd 3/ 2 s - solution dynamic viscosity, g cm s–1 - solution kinematic viscosity, cm2 s–1 - solution density, g cm–3 - density difference between bulk solution and electrode/solution interface, g cm–3 - s solution density at electrode/solution interface, g cm–3 - d screen diameter, cm - g gravitational acceleration, cm s–2 On leave of absence, Chemical Engineering Department, Alexandria University, Alexandria, Egypt.  相似文献   

15.
Sodium silicate glasses with a constant ratio of oxide concentrations (mol %) SiO2/Na2O = 2.4 and with copper ions introduced in the form of CuO (from 1 to 10 mol %) are studied by the EPR method. The shape and width of the EPR line of copper ions are analyzed, and the spin-Hamiltonian parameters g ||, g , A ||, and A are determined by simulating the EPR spectrum and comparing the simulated and experimental spectra. The EPR spectrum of copper ions (1 mol %) is characterized by the parameters g || = 2.35, g = 2.065, A || = 135 × 10–4 cm–1, A = 7 × 10–4 cm–1, and H = 25 G. An analysis of this spectrum shows that the nearest environment of the Cu2+ ion has the shape of an elongated octahedron. The EPR spectrum of the sodium silicate glass containing 10 mol % Cu is a superposition of the spectrum of an octahedral complex (g || = 2.35, g = 2.075, A || = 135 × 10–4 cm–1, H = 40 G) and the spectrum of a cluster (g || = 2.35, g = 2.15, A || = 135 × 10–4 cm–1, H = 50 G).  相似文献   

16.
In this study cyclic voltammetry/coulometry has been combined with oxygen volume measurements to identify the species giving the multiple anodic and cathodic peaks for a pre-cycled -Ni(OH)2 starting material. A complex sequence of 1 and 2 electron transfer reactions involving several U/V and U/V coexisting phase pairs has been identified. This system is complicated by overlap of the various processes in some cases and also the chemical transformation of unstable -phases. As many as six anodic and four cathodic processes can be encountered depending on the charging history.  相似文献   

17.
The surface composition and structure of 111, 100, and 110 oriented single crystals of the ordered alloy Pt3Sn (Ll2 or Cu3Au-type) were determined using the combination of low energy electron diffraction (LEED) and low energy ion scattering spectroscopy (LEISS). The clean annealed surfaces displayed LEED patterns and Sn/Pt LEISS intensity ratios consistent with the surface structures expected for bulk termination. In the case of the 100 and 110 crystals, preferential termination in the mixed (50% Sn) layer was indicated, suggesting this termination to be the consequence of a thermodynamic preference for tin to be at the surface.  相似文献   

18.
The potential (or current) fluctuations observed under current (or potential) control during gas evolution were analysed by spectral analysis. The power spectral densities (psd) of these fluctuations were measured for hydrogen and oxygen evolution in acid and alkaline solutions at a platinum disk electrode of small diameter. Using a theoretical model, some parameters of the gas evolution were derived from the measured psd of the potential fluctuations, such as the average number of detached bubbles per time unit, the average radius of the detached bubbles and the gas evolution efficiency. The influence of the electrolysis current on these parameters was also investigated. The results of this first attempt at parameter derivation are discussed.Nomenclature b Tafel coefficient (V–1), Equation 46 - C electrode double layer capacity (F) - e gas evolution efficiency (%) - f frequency (Hz) - f p frequency of the peak in the psd v and i (Hz) - F Faraday constant, 96 487 C mol–1 - l electrolysis current (A) - J electrolysis current density (mA cm–2) - k slope of the linear potential increase (V s–1), see Fig. 1 - n number of electrons involved in the reaction to form one molecule of the dissolved gas - r b radius of a spherical glass ball (m) - r e radius of the disk electrode (m) - R e electrolyte resistance () - R p polarization resistance () - R t charge transfer resistance () - u 1 distribution function of the time intervals between two successive bubble departures (s–1) - v g mean volume of gas evolved per unit time (m3 s–1) - v t gas equivalent volume produced in molecular form per unit time (m3 s–1) - V 0 gas molar volume, 24.5×10–3 m3 at 298 K - x 0 time pseudoperiod of bubbles evolution (s) - Z electrode electrochemical impedance () Greek characters e dimensionless proportional factor (Equation 19) - slope of log /logJ and loge/logJ curves - number of bubbles evolved per unit time (s–1) - a activation overpotential (V) - ci concentration overpotential of reacting ionic species (V) - cs concentration overpotential of dissolved molecular gas (V) - ohm ohmic overpotential (V) - t total overpotential (V) - v parameter characteristic of the gas evolution pseudoperiodicity, Equation 13 (s–1) - time constant of the double layer capacity change (s) - v power spectral density (psd) of the potential fluctuations (V2 Hz–1) - i power spectral density (psd) of the current fluctuations (A2 Hz–1) Special symbols spatial average of the overpotential j over the electrode surface - time averaged value of - j fluctuation of around - <> mean value of the total overpotential jump amplitude due to a bubble departure - <I> mean value of the current jump amplitude due to a bubble departure Paper presented at the 2nd International Symposium on Electrolytic Bubbles organized jointly by the Electrochemical Technology Group of the Society of Chemical Industry and the Electrochemistry Group of the Royal Society of Chemistry and held at Imperial College, London, 31st May and 1st June 1988.  相似文献   

19.
Partial oxidation of methane to synthesis gas   总被引:3,自引:0,他引:3  
Partial oxidation of methane to synthesis gas has been carried out over a number of transition metal catalysts under a range of conditions. It is found that the metals Ni, Ru, Rh, Pd, Ir and Pt, either supported on alumina or present in mixed metal oxide precursors, will bring the system to equilibrium. The yield of CO and H2 improves with increasing temperature in the range 650–1050 K, and decreases with increasing pressure between 1 and 20 atm. An excellent yield (92%) is obtained with a 421 N2CH4O2 ratio at 1050 K and atmospheric pressure, with a space velocity of 4×104 hour–1.  相似文献   

20.
A modified method for producing a range of dicalcium phosphate containing phosphatic fertilizers and aqueous calcium nitrate is discussed. The process consists of reacting phosphate rock with nitric acid followed by pyrolysis of the resulting acidulate to produce dicalcium phosphate (CaHPO4) and to liberate approximately one-half of the initially consumed nitric acid. Recycling of the liberated nitric acid allows production of available phosphate at approximately one-half the acid equivalents consumption normally utilized in wet-process acid production. The calcium nitrate by-product is separated from the phosphatic component of the pyrolyzate by dissolution in water followed by filtration. The initial HNO3 : CaO acidulation ratio governs the available P2O5 content of the phosphatic fertilizer, which may be as high as 47%. The aqueous calcium nitrate stream may be processed to produce a variety of solid or fluid nitrogen fertilizer products. No throwaway by-products (other than possibly siliceous gangue) are produced. Estimates are given for raw materials needed and energy cost.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号