首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 281 毫秒
1.
The poling effect on the [011]‐oriented (1?x)Pb(Mg1/3Nb2/3)O3xPbTiO3 (PMN–xPT) single crystals across the morphotropic phase boundary (MPB) was studied. The dielectric and piezoelectric properties were investigated as a function of the poling field. Domain structure evolutions during the poling process were recorded. In the unpoled PMN–xPT phase diagram, an apparent rhombohedral (R)‐tetragonal (T) phase boundary exists. With room‐temperature poling, the structure transformation sequence strongly depends on the composition. The crystal experiences a direct transition to the 2R/2T domain state in the rhombohedral or tetragonal phase field beyond the MPB region, whereas within the MPB zone it is hard to achieve the 2R/2T engineered configuration although the initial state is either rhombohedral or tetragonal as well. The piezoelectric responses of the MPB·PMN–xPTs are extraordinary weak (d33 ~ 250 pC/N), in contrast to the [011]‐oriented multidomain PMN–xPTs with ultrahigh‐piezoelectric coefficient (d33 > 1000 pC/N). We demonstrate that a slight composition variation near the MPB will significantly influence the domain evolution route and piezoelectricity for the [011]‐oriented PMN–xPT crystals. We also confirm the feasibility to realize the 2R/2T engineered domain configuration for the [011]‐oriented MPB crystals, which will extend the desired portion of the Bridgeman‐grown boules with optimal piezoelectric properties.  相似文献   

2.
The influence of temperature on the variation in dielectric nonlinearity and domain structures was investigated for the (Ba0.95Ca0.05)(Ti0.83Zr0.17)O3 (BCTZ)‐based multilayer ceramic capacitor that shows a diffuse phase transition. Whereas the dielectric constant (εr) vs temperature shows a broadened maximum peak at low ac driving field, such a peaked behavior disappears at high ac driving field due to an abrupt increase in dielectric constants at low temperatures. Such low temperature effect can be associated with an enhanced spontaneous polarization (PS) and a significant increase in irreversible domain wall contribution to polarization representing normal ferroelectric behavior based on the Preisach analysis. No ferroelectric domain contrasts were observed at room temperature through transmission electron microscopy. However, they appeared and became more and more distinct with the decrease in temperature, and the crystal structure also changed from cubic to rhombohedral with increased lattice constants. It demonstrates that the dramatic increase in the dielectric nonlinearity with decreasing temperatures originates from the corresponding changes in domain and crystal structure, where the polar‐micro‐regions of BCTZ at room temperature change to normal ferroelectric domains at low temperatures.  相似文献   

3.
The piezoelectric properties of [110]‐oriented Mn‐doped Pb(Mg1/3Nb2/3)O3‐30%PbTiO3 single crystals was found to be enhanced by poling at room temperature, relative to traditional poling on field‐cooling (FC). High‐resolution x‐ray diffraction data revealed a phase transition sequence of cubic→tetragonal→ orthorhombic (O)→monoclinic B‐type (MB) on field‐cooling with a phase coexistence of single domain O and MB at 300 K in the FC state; whereas poling at room temperature revealed a MB single phase. Accordingly, the structural origin of the piezoelectricity enhancement on poling at room temperature is attributed to a pure MB phase. It is probable, in the FC state, that field‐cooling results in defect dipole migration, which then acts to stabilize regions of the O phase on cooling into the MB one.  相似文献   

4.
Structural analysis of electrically poled samples of polycrystalline, (1‐x)Bi(Mg1/2Zr1/2)O3xPbTiO3 piezoceramics across morphotropic phase boundary reveals electric field‐induced cubic to tetragonal phase transition and significant domain reorientation in tetragonal and two‐phase compositions. The c‐axis domain elongation is observed for tetragonal compositions after poling. The morphotropic phase boundary composition, having coexisting cubic and tetragonal phases in the unpoled state, exhibits alteration in relative proportion of the two phases, in addition to domain extension and reorientation along c‐axis. For the morphotropic phase boundary composition, the tetragonality (c/a) is enhanced with significantly large c‐axis strain (~0.92%) in tetragonal phase after poling. Origin of ferroelectric P‐E loop in cubic compositions is linked with the electric field‐induced phase transition.  相似文献   

5.
(1?x)Bi1/2Na1/2TiO3xPbMg1/3Nb2/3O3[(1?x)BNT‐xPMN] ceramics have been fabricated via a conventional solid‐state method for compositions x ≤ 0.3. The microstructure, phase structure, ferroelectric, and dielectric properties of ceramics were systematically studied as high‐temperature capacitor materials. XRD pattern certified perovskite phase with no secondary phase in all compositions. As PMN concentration increased, the phase of (1?x)BNT‐xPMN ceramics transformed from ferroelectric to relaxor gradually at room temperature, with prominent enhancement of dielectric temperature stability. For the composition x = 0.2, the temperature coefficient of capacitance (TCC) was <15% in a wide temperature range from 56 to 350°C with high relative permittivity (>3300) and low dielectric loss (<0.02) at 150°C, which indicated promising future for (1?x)BNT‐xPMN system as high‐temperature stable capacitor materials.  相似文献   

6.
In this paper, we report on studies of the electrocaloric (EC) effect in lead‐free (1?x)Ba(Zr0.2Ti0.8)O3x(Ba0.7Ca0.3)TiO3 ceramics with compositions range between 0.32 ≤ x ≤ 0.45. The EC effect was measured directly using a modified differential scanning calorimeter. The maximum EC temperature change, ΔTdirect = 0.33 K under an electric field of 2 kV/mm, was observed for the composition with x = 0.32 at ~63°C. We found that the EC effect peaks not only around the Curie temperature but also at the transition between the ferroelectric phases with different symmetries. A strong discrepancy observed between the results of the direct measurements and indirect estimations points out that using Maxwell's equations is invalid for the thermodynamic nonequilibrium conditions that accompany only partial (incomplete) poling of ceramics. We also observe a nonlinearity of the EC effect above the Curie temperature and in the temperature range corresponding to the tetragonal ferroelectric phase.  相似文献   

7.
The effect of lanthanum (La) content on the phase transformation of Pb1?3x/2Lax(Zr0.42Sn0.40Ti0.18)O3 (PLZST 100x/42/40/18, 0 ≤ x ≤ 0.06) ceramics was investigated by the dielectric and ferroelectric properties. The base composition PLZST 0/42/40/18 located in the ferroelectric (FE) rhombohedral phase region. As x increased, the compositions showed successively FE and antiferroelectric (AFE) state at room temperature, and their peak temperatures (Tmax) decreased gradually in line as Tmax = 162.21‐1507x. Evidence was presented that there were two dielectric anomalies in PLZST 2/42/40/18, which were corresponding to the FE‐AFE and AFE‐paraelectric (PE) phase transformations, respectively. With increasing the dc bias fields, the two phases merged into one. PLZST 3/42/40/18 showed AFE characteristics with the first loop outside of the second loop and there was only one dielectric inflection. The critical lanthanum content occurred at x = 0.03 from the dielectric temperature spectra and hysteresis loops. Furthermore increase in La above 0.03, these compositions showed typical antiferroelectric behaviors with double hysteresis loops. The stored energy properties of the three compositions (PLZST 4/42/40/18, 5/42/40/18 and 6/42/40/18) displayed different temperature dependencies from room temperature to 140°C (over their respective Tmax). Comparing the above results with previous investigations on PLZSTs, some questions were discussed.  相似文献   

8.
The hysteresis behaviors and phase characteristics of Pb0.97La0.02(Zr0.90Sn0.025Ti0.075)O3 (PLZST) ceramics were investigated in this work. A single mini hysteresis loop at 3 kV/mm with the maximum polarization (Pmax) of 8.3 μC/cm2 and triple hysteresis loops at 6.6 kV/mm were observed, which indicates the coexistence of rhombohedral ferroelectric phase and tetragonal antiferroelectric phase. The X‐ray Diffraction patterns and dielectric temperature spectra both demonstrate this coexistence. Moreover, the hysteresis loops with increasing temperature indicated that a ferroelectric–antiferroelectric phase transition occurred at about 60°C. These phenomena would be useful for understanding the domain evolution during ferroelectric and antiferroelectric phase transition.  相似文献   

9.
Multiferroic ceramics were prepared and characterized in (1?x)BiFeO3x(0.5CaTiO3–0.5SmFeO3) system by a standard solid‐state reaction process. The structure evolution was investigated by X‐ray diffraction and Raman spectrum analyses. The refinement results confirmed the different phase assemblages with varying amounts of polar rhombohedral R3c and nonpolar orthorhombic Pbnm as a function of the substitution content. In the compositions range of 0.2≤x≤0.5, polar R3c and nonpolar Pbnm coexisted, which was referred to polar‐to‐nonpolar morphotropic phase boundary (MPB). According to the dielectric and DSC analysis results, the ceramics with x≤0.2 changed to diffused ferroelectric, and the ferroelectric properties were enhanced significantly. Two dielectric relaxations were detected in the temperature range of 200‐300 K and 500‐700 K, respectively. The high‐temperature dielectric relaxation was attributed to the grain‐boundary effects. While the low temperature dielectric relaxation obtained in the samples with x=0.3‐0.5 was related to the charge transfer between Fe2+ and Fe3+. The magnetic hysteresis loops measured at different temperature indicated the enhanced magnetic properties in the present ceramics, which could be attributed to the suppressed cycloidal spin magnetic structure by Ti ions. In addition, the rare‐earth Sm spin moments might also affect the magnetic properties at relatively lower temperature.  相似文献   

10.
A new lead‐potassium‐free ceramic of (0.9‐x)NaNbO3‐0.1BaTiO3‐xNaSbO3 (NN‐BT‐xNS) was successfully prepared via a solid‐state reaction method. The microstructure, phase structure, dielectric, ferroelectric, and piezoelectric properties were investigated as a function of NS content. The substitution of NS for NN was found to dramatically change the grain morphology from cube‐like grains typical for alkaline niobate‐based ceramics to conventional sphere‐like grains especially for Pb‐based perovskite ceramics. A normal to relaxor ferroelectric phase transformation was accompanied by a tetragonal (T) to rhombohedral (R) phase transition. A composition‐temperature phase diagram demonstrated a vertical morphotropic phase boundary between T and R phases in the composition range of x=0.03‐0.04, where optimum electrical properties of d33=252 pC/N, kp=36%, Qm=168, =2063, and Tc=109°C were obtained in the x=0.035 ceramic sintered at 1260°C. Particularly, excellent temperature insensitivity of small‐signal piezoelectric properties suggested large application potentials in various actuators and sensors in comparison with other typical lead‐free materials.  相似文献   

11.
Lead‐free ferroelectric ceramics (1–x)(Ba0.7Ca0.3)TiO3xBa(Zr0.2Ti0.8)O3 (BCTZ100x) with x = 0.20, 0.30, 0.40, 0.50, 0.60, 0.70, and 0.80 were evaluated for their pyroelectric energy harvesting performance, using the Olsen cycle. As the composition ratio x increased, the crystal phase changed to tetragonal, orthorhombic, rhombohedral, and cubic; the phase boundaries crossed each other in the vicinity of BCTZ70. The crossover phase transition behavior between first‐order and diffuse phase transition changed to only the diffusion phase transition with increasing x. A pinching effect occurred because an increase in dielectric constant was also observed. Energy densities ND of 229 mJ/cm3 and 256 mJ/cm3 for BCTZ50 and BCTZ80 were obtained, respectively, in temperature of 30°C‐100°C and an electric field of 0‐30 kV/cm. These ND values are over two times higher than that of soft–Pb(Ti,Zr)O3 (PZT), which exhibits piezoelectric performance equivalent to BCTZ50 at room temperature. Compared with soft–PZT, BCTZ50 and BCTZ80 exhibited larger ND values owing to their lower Curie temperatures (TC ~ 50°C‐110°C). We conclude that low–TC ferroelectrics are useful for pyroelectric energy conversion based on the Olsen cycle even if they are unsuitable for piezoelectric applications at high temperatures.  相似文献   

12.
The phase structure, dielectric, ferroelectric, and piezoelectric properties of (1?2x)BiScO3xPbTiO3xPbMg1/3Nb2/3O3 ceramics (x = 0.30‐0.46) were studied. It was found that an increase in x leads to a structural phase transition between the rhombohedral and tetragonal phase via an intermediate monoclinic phase and to a crossover from the nonergodic relaxor state to the ferroelectric one. It was proposed that at x > 0.42 the phase transition changes from second to first order. The assumption about the existence of a tricritical point on the phase diagram at x ≈ 0.42 with the enhanced dielectric response has been made. The observed structure‐property relationships of the studied solid solutions are discussed. It is shown that the solid solutions with x = 0.42 are characterized by the high piezoelectric parameters (d33 = 509 pC/N, d31 = ?178 pC/N, dh = 153 pC/N), which makes possible their applications in sonar equipment.  相似文献   

13.
Effects of quenching process on dielectric, ferroelectric, and piezoelectric properties of 0.71BiFeO3?0.29BaTiO3 ceramics with Mn modification (BF–BT?xmol%Mn) were investigated. The dielectric, ferroelectric, and piezoelectric properties of BF–BT?xmol%Mn were improved by quenching, especially to the BF–BT?0.3 mol%Mn ceramics. The dielectric loss tanδ of quenched BF–BT?0.3 mol%Mn ceramics was only 0.28 at 500°C, which was half of the slow cooling one. Meanwhile, the remnant polarization Pr of quenched BF–BT?0.3 mol%Mn ceramics increased to 21 μC/cm2. It was notable that the piezoelectric constant d33 of quenched BF–BT?0.3 mol%Mn ceramics reached up to 191 pC/N, while the TC was 530°C, showing excellent compatible properties. The BF–BT?xmol%Mn system ceramics showed to obey the Rayleigh law within suitable field regions. The Rayleigh law results indicated that the extrinsic contributions to the dielectric and piezoelectric responses of quenched BF–BT?xmol%Mn ceramics were larger than the unquenched ceramics. These results presented that the quenched BF–BT?xmol%Mn ceramics were promising candidates for high‐temperature piezoelectric devices.  相似文献   

14.
Dielectric study over a broadband was carried out from 10 to 70 K on ceramic Gd1?xYxMnO3 (x=0.2, 0.3 and 0.4). For all the compositions, a prominent sharp peak about ~18 K was observed in the temperature dependence of both ε′(T) and ε″(T) at all frequencies, indicating a long‐range ferroelectric (FE) transition. Using Cole‐Cole fit to the permittivity data, the relaxation time τ and the dielectric strength ?ε were estimated. Temperature variation of τ(T) in the Arrhenius representation is found to be nonlinear (non‐Debyean relaxation), with increasing barrier‐activation energy over successive temperature‐windows. Interestingly, for all the compositions, we witness a jump in τ(T) about the ferroelectric transition temperature, concurred by a broad‐maximum in ?ε(T),signifying the critical slow down of relaxations near long‐range FE‐correlations.  相似文献   

15.
Lead‐free 0.985[(0.94?x)Bi0.5Na0.5TiO3–0.06BaTiO3xSrTiO3]–0.015LiNbO3 [(BNT–BT–xST)–LN, x=0‐0.05] piezoelectric ceramics were prepared using a conventional solid‐state reaction method. It was found that the long‐range ferroelectric order in the unmodified (BNT–BT)–LN ceramic was disrupted and transformed into the ergodic relaxor phase with the ST substitution, which was well demonstrated by the dramatic decrease in remnant polarization (Pr), coercive field (Ec), negative strain (Sneg) and piezoelectric coefficient (d33). However, the degradation of the ferroelectric and piezoelectric properties was accompanied by a significant increase in the usable strain response. The critical composition (BNT–BT–0.03ST)–LN exhibited a maximum unipolar strain of ~0.44% and corresponding normalized strain, Smax/Emax of ~880 pm/V under a moderate field of 50 kV/cm at room temperature. This giant strain was associated with the coexistence of the ferroelectric and ergodic relaxor phases, which should be mainly attributed to the reversible electric‐field‐induced transition between the ergodic relaxor and ferroelectric phases. Furthermore, the large field‐induced strain showed relatively good temperature stability; the Smax/Emax was as high as ~490 pm/V even at 120°C. These findings indicated that the (BNT–BT–xST)–LN system would be a suitable environmental‐friendly candidate for actuator applications.  相似文献   

16.
Solid solution of Ca9‐xMgxBi(VO4)7 in powder and ceramic forms are obtained by solid‐state reactions. Details of their crystal structures are determined for x = 0.25 and x = 0.5 by synchrotron radiation diffraction and the Rietveld method. The refinement has confirmed that Mg2+ is replacing Ca2+ in M5 position of a polar (S.G. R3c) β‐Ca3(PO4)2‐type structure. Thermal analysis, dielectric and second harmonic generation experiments in broad temperature regions have proved this polar structure is formed for 0 ≤ x ≤ 0.7. Magnesium for calcium substitution enhances optical nonlinear activity of Ca9‐xMgxBi(VO4)7 in 0 < x ≤ 0.5. Two phase transitions have been found, one of which from polar to centrosymmetric phase is accompanied by dielectric constant peak of ferroelectric type. The other is upper on temperature, marked with smaller dielectric anomaly, and goes between 2 centrosymmetric phases. Temperatures of the phase transition only slightly depend on x, the first being near 1050 K, the second near 1100 K. Electric conductivity quickly rises with temperature in the polar phase. At higher temperature it changes according to the Arrhenius law with small activation energy, Ea ~ 0.7 eV for bulk conductivity and Egb ~ 2.0‐2.5 eV for grain boundary conductivity. The analysis of bulk and grain boundary conductivities agrees with Ca2+‐ion fast transport in ceramics. The bulk conductivity slowly decreases with magnesium content, the grain boundary conductivity does not notably depend on the composition.  相似文献   

17.
The relationship between the piezoelectric properties and the structure/microstructure for 0.05Bi(Mg2/3Nb1/3)O3‐(0.95‐x)BaTiO3xBiFeO3 (BBFT,= 0.55, 0.60, 0.63, 0.65, 0.70, and 0.75) ceramics has been investigated. Scanning electron microscopy revealed a homogeneous microstructure for < 0.75 but there was evidence of a core‐shell cation distribution for = 0.75 which could be suppressed in part through quenching from the sintering temperature. X‐ray diffraction (XRD) suggested a gradual structural transition from pseudocubic to rhombohedral for 0.63 < < 0.70, characterized by the coexistence of phases. The temperature dependence of relative permittivity, polarization‐electric field hysteresis loops, bipolar strain‐electric field curves revealed that BBFT transformed from relaxor‐like to ferroelectric behavior with an increase in x, consistent with changes in the phase assemblage and domain structure. The largest strain was 0.41% for x = 0.63 at 10 kV/mm. The largest effective piezoelectric coefficient (d33*) was 544 pm/V for = 0.63 at 5 kV/mm but the largest Berlincourt d33 (148 pC/N) was obtained for x = 0.70. We propose that d33* is optimized at the point of crossover from relaxor to ferroelectric which facilitates a macroscopic field induced transition to a ferroelectric state but that d33 is optimized in the ferroelectric, rhombohedral phase. Unipolar strain was measured as a function of temperature for = 0.63 with strains of 0.30% achieved at 175°C, accompanied by a significant decrease in hysteresis with respect to room temperature measurements. The potential for BBFT compositions to be used as high strain actuators is demonstrated by the fabrication of a prototype multilayer which achieved 3 μm displacement at 150°C.  相似文献   

18.
By conventional ceramics sintering technique, the lead‐free 0.85Bi0.5Na0.5(1?x)Li0.5xTiO3‐0.11Bi0.5K0.5TiO3‐0.04BaTiO3 (x =0–0.15) piezoelectric ceramics were obtained and the effects of Li dopant on the piezoelectric, dielectric, and ferroelectric properties were studied. With increasing Li addition, the temperature‐dependent permittivity exhibited the normal ferroelectric‐to‐ergodic relaxor (FE‐to‐ER) transition temperature (TFEER, abbreviated as TF‐R) decreasing down to room temperature. The increasing Li content also enhanced the diffuseness of the FE‐to‐ER transition behavior. For composition with x = 0.15, a large unipolar strain of 0.37% ( = Smax/Emax = 570 pm/V) was achieved under 6.5 kV/mm applied electric field at room temperature. Both unipolar and bipolar strain curves related to the temperature closely, and when the temperature reached the TF‐R, the normalized strain achieved a maximum value (e.g., for x = 0.10, = 755 pm/V) owing to the electric‐field‐induced ER‐to‐FE state transition.  相似文献   

19.
The high‐energy storage density reported in lead‐free AgNbO3 ceramics makes it a fascinating material for energy storage applications. The phase transition process of AgNbO3 ceramics plays an important role in its properties and dominates the temperature and electric field dependent behavior. In this work, the phase transition behavior of AgNbO3 ceramics was investigated by polarization hysteresis and dielectric tunability measurements. It is revealed that the ferrielectric (FIE) phase at room temperature possesses both ferroelectric (FE)‐like and antiferroelectric (AFE)‐like dielectric responses prior to the critical AFE‐FE transition point. A recoverable energy storage density of 2 J/cm3 was achieved at 150 kV/cm due to the AFE‐FE transition. Based on a modified Laudau phenomenological theory, the stabilities among the AFE, FE and FIE phases are discussed, laying a foundation for further optimization of the dielectric properties of AgNbO3.  相似文献   

20.
The dielectric, piezoelectric properties, and fatigue behaviors of stoichiometric (Bi0.5+x/2Na0.5‐x/2)0.94Ba0.06Ti1‐xFexO3 (BNBT‐xFe) ferroelectrics are investigated. Fe substitution leads to the downward shift of the ferroelectric‐relaxor transition temperature (TF‐R) and increase in strain. Meanwhile, fatigue behaviors of the modified ceramics are significantly enhanced. Ex situ X‐ray diffraction and transmission electron microscopy reveal microscopic mechanism for polarization fatigue on different compositions. The fatigue‐free behavior of ferroelectric BNBT‐0.03Fe is not only attributed to a mechanism involving the formation of defect dipoles, which reduces the pinning effect of migratory oxygen vacancies on domain walls, but is also connected to the decrease in easily suppressed field‐induced ferroelectric tetragonal phase. While for ergodic relaxor BNBT0.09Fe, the absence of domain wall contributes to the good fatigue resistance behavior. Interestingly, electric cycling results in an increased fraction of relaxor phase, accompanying by the increase in the total strain and decrease in remnant polarizations.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号