首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 593 毫秒
1.
Monolayer molybdenum disulfide (MoS2) is a novel two-dimensional material that exhibits potential application in lubrication technology. In this work, molecular dynamics was used to investigate the lubrication behaviour of different polar fluid molecules (i.e., water, methanol and decane) confined in monolayer MoS2 nanoslits. The pore width effect (i.e., 1.2, 1.6 and 2.0 nm) was also evaluated. Results revealed that decane molecules exhibited good lubricating performance compared to the other two kinds of molecules. The friction coefficient followed the order of decane < methanol < water, and decreased evidently as the slit width increased, except for decane. Analysis of the spatial distribution and mobility of different confined fluid molecules showed that a solid-like layer was formed near the slit wall. This phenomenon led to the extra low friction coefficient of confined decane molecules.  相似文献   

2.
The influence of the environment on the tribological properties of diamond has been studied by investigating the effect on the friction coefficient of oxygen containing liquids introduced at the interface of contact. A diamond stylus was allowed to perform reciprocating movement on a diamond surface under different loads and sliding velocities. A droplet of the chosen liquid was introduced at the interface and the changes in the friction coefficient were recorded. All the liquids tested reduced the value of the friction coefficient significantly, by an extent which depended on the chemical composition of the liquid, the load and the sliding velocity. An interpretation of our results is given in terms of the reduction of adhesion due to the adsorption of these liquids on the surface, and of the possibility of graphitisation occurring on the surface during sliding.  相似文献   

3.
很多废水处理装置涉及非牛顿型流体中的多相流动和传质问题,研究其中的气液传质过程有助于实现装置的优化设计和高效节能运行。以鼓泡反应器内清水和不同质量分数的羧甲基纤维素钠(CMC)水溶液为实验对象,分别研究气相表观气速和液相流变特性对气泡尺寸分布、全局气含率和体积氧传质系数的影响。实验结果表明,液相的流变特性对其传质特性参数均有较大影响。与清水相比,CMC水溶液中气泡平均直径和分布范围更大;清水和CMC水溶液的全局气含率均随表观气速的增加而增大;CMC水溶液的体积氧传质系数随CMC水溶液质量分数的增加而减小。基于实验研究,得出修正的体积氧传质系数公式和适用于幂律型非牛顿流体流动体系氧传递过程的无量纲关联式,可很好地实现非牛顿流体流动的废水处理装置中气液传质参数的计算。  相似文献   

4.
The prime objective of the present communication is to examine the entropy-optimized second order velocity slip Darcy–Forchheimer hybrid nanofluid flow of viscous material between two rotating disks.Electrical conducting flow is considered and saturated through Darcy–Forchheimer relation. Both the disks are rotating with different angular frequencies and stretches with different rates. Here graphene oxide and titanium dioxide are considered for hybrid nanoparticles and water as a continuous phase liquid. Joule heating, heat generation/absorption and viscous dissipation effects are incorporated in the mathematical modeling of energy expression. Furthermore, binary chemical reaction with activation energy is considered. The total entropy rate is calculated in the presence of heat transfer irreversibility, fluid friction irreversibility,Joule heating irreversibility, porosity irreversibility and chemical reaction irreversibility through thermodynamics second law. The nonlinear governing equations are first converted into ordinary differential equations through implementation of appropriate similarity transformations and then numerical solutions are calculated through Built-in-Shooting method. Characteristics of sundry flow variables on the entropy generation rate, velocity, concentration, Bejan number, temperature are discussed graphically for both graphene oxide and titanium dioxide hybrid nanoparticles. The engineering interest like skin friction coefficient and Nusselt number are computed numerically and presented through tables. It is noticed from the obtained results that entropy generation rate and Bejan number have similar effects versus diffusion parameter. Also entropy generation rate is more against the higher Brinkman number.  相似文献   

5.
In this study, interactions between a gas bubble and a flat solid surface were investigated by determining two dynamic parameters, bubble sliding velocity underneath an inclined solid surface and induction time of the gas bubble attaching to the solid surface in aqueous solutions. A single micro‐bubble was allowed to move vertically toward an inclined solid surface. After reaching its terminal velocity, the bubble approaches the inclined solid surface and slides underneath it. Complete trajectory of the bubble movement was monitored and recorded by a high‐speed CCD video imaging system. Various types of gas bubbles (CO2, air, H2, and O2) and solid surfaces such as bitumen‐coated Teflon, hydrophobized and hydrophilic silica were used in sliding velocity and induction time measurements. The effect of water chemistry (industrial process water and de‐ionized water) and surface heterogeneity on bubble sliding velocity and induction time was investigated. The results showed that the sliding velocity of micro‐bubbles under an inclined solid surface is a strong function of water chemistry, gas type, temperature and hydrophobicity of the solid surface. This study provides relevant information on bubble–solid interactions that would assist in the understanding of bubble–solid attachment under diverse conditions.  相似文献   

6.
Solid lubricants, that is, graphite flakes and poly(tetrafluoroethylene) powders, were incorporated with short carbon fibers into a poly(ether imide) matrix to improve the tribological performance. Wear tests were performed with a polymer pin against a mild steel counterpart at a constant sliding speed of 1 m/s under various temperatures and contact pressures. Composites filled with equilibrium contents of solid lubricants and short carbon fibers, that is, 10 vol % of each filler, exhibited the lowest wear rate and friction coefficient. The relatively lower concentration of solid lubricants adversely affected the wear resistance, whereas the friction coefficient did not vary significantly in comparison with the friction coefficient of the composites filled with only short carbon fibers. The improved tribological behavior was attributed to more continuous and effective friction films formed on the material pairs during sliding. © 2004 Wiley Periodicals, Inc. J Appl Polym Sci 94: 1428–1434, 2004  相似文献   

7.
In this paper, the tribological behaviors of B4C–SiC composites self-mated pairs in seawater and pure water were investigated, respectively. The results showed that the B4C–SiC composite with the content of 20%SiC has good mechanical properties. For the B4C–20%SiC self-mated pair in seawater, the abrasive wear is greatly weakened, and the tribo-chemical reactions between the composite surface and water molecules occurred. The tribo-chemical polishing causes very smooth wear surfaces, and the sliding pairs enter to the status of liquid lubrication. An extremely low friction coefficient (0.038) and wear rate (both below the order of magnitude 10−5 mm3/N m) were obtained in this study. Due to the lower viscosity of pure water, the load carrying capacity of the liquid film reduces. So, in pure water, the sliding pair shows slightly higher friction coefficient and wear rate than that in seawater.  相似文献   

8.
The research presented in this paper aims to investigate the effectiveness of different surface roughness and lubrication conditions on the interfacial tribological properties between silicon carbide (SiC) and silicon nitride (Si3N4) ceramics, particularly for providing insight into the mechanisms of how graphene reduces the friction and wear rate. The worn groove topography and surface composition were characterised in detail with 3D laser measuring microscopy and X-ray photoelectron spectroscopy. The tribological test results on the UMT-TriboLab show that a smooth initial surface is more likely to obtain a low friction coefficient and wear rate under water lubrication. The proper initial surface roughness for SiC and Si3N4 ceramics is approximately Ra 10?nm, and it will be lower in an alcohol or graphene aqueous solution. A large load does not worsen the tribological behaviour of a Si3N4 ball sliding against a SiC disk, and it reduces the friction coefficient and wear rate. Among the five lubrication states of dry friction, dry graphene lubrication, water lubrication, graphene solution lubrication, and self-developed graphene lubrication, the self-developed graphene lubricant can exhibit an ultra-low friction coefficient of 0.009 and ultra-low wear rate of 1.69?×?10?7?mm3/N·m. The excellent tribological property of the graphene-coated ceramic surface helps the prepared lubricant to decrease the friction coefficient effectively. Furthermore, the graphene film can protect the SiC from being oxidised by water under the tribo-activated action, and therefore, lead to ultra-low wear rate under low friction condition. Alcohol improves the tribological property of the self-developed graphene lubricant, mainly because of the good wettability between graphene and ethanol. The self-developed graphene lubricant can be applied in water-lubricated ceramic bearings and motorised precision spindles.  相似文献   

9.
Polyetheretherketone (PEEK) is a kind of polymer with excellent mechanical properties combined with good wear resistance and has been widely used in the engineering field. In order to explore the possibility for PEEK using as a water-lubricated bearing material, an in-depth study on the water lubrication performance of PEEK was conducted by using a series of experiments. The water lubrication performances combined with the lubricating mechanism were evaluated both by the friction coefficient and by the wear behavior of PEEK. The results indicated that PEEK was suitable for water-lubricated bearing productions. The water film could form effectively between the friction pairs under high sliding velocity, while the transfer film could form under low sliding velocity. Both the water film and the transfer film could improve the water lubrication performance for the friction pairs. Moreover, sliding velocities and contact pressures highly influence the water lubrication performance of PEEK. The increase in contact pressure or the decrease in sliding velocity would exacerbate the wear of material. The stick–slip phenomena also occurred on the specimens under low sliding velocity. The main purpose of this study is to provide an experimental basis for PEEK using as a water-lubricated bearing material.  相似文献   

10.
We investigated the rheological and frictional behavior of a model system of lubricated, atomically-smooth, solid surfaces at zero and negative external normal load. The measurements were performed with a surface forces apparatus modified for oscillatory shear. For low deflection amplitudes, and negative loads up to the point when the surfaces jumped apart, the confined liquid layer (0.7 ± 0.2 nm perfluorinated heptaglyme) showed a highly elastic behavior independent of load. In the sliding regime at large amplitudes, the behavior was mostly dissipative but also independent of normal load. The force necessary to separate the surfaces was not affected by any sliding conditions. However, the friction force showed a very pronounced decrease as a consequence of sliding at large amplitudes. Thus, for our system, friction and adhesion are decoupled. We propose a mechanism of in-plane rearrangements of the molecules and explain the shear-induced reduction of friction by the formation of shear-bands.  相似文献   

11.
We investigated the rheological and frictional behavior of a model system of lubricated, atomically-smooth, solid surfaces at zero and negative external normal load. The measurements were performed with a surface forces apparatus modified for oscillatory shear. For low deflection amplitudes, and negative loads up to the point when the surfaces jumped apart, the confined liquid layer (0.7 ± 0.2 nm perfluorinated heptaglyme) showed a highly elastic behavior independent of load. In the sliding regime at large amplitudes, the behavior was mostly dissipative but also independent of normal load. The force necessary to separate the surfaces was not affected by any sliding conditions. However, the friction force showed a very pronounced decrease as a consequence of sliding at large amplitudes. Thus, for our system, friction and adhesion are decoupled. We propose a mechanism of in-plane rearrangements of the molecules and explain the shear-induced reduction of friction by the formation of shear-bands.  相似文献   

12.
In modern chemical engineering processes, solid interface involvement is the most important component of process intensification techniques, such as nanoporous membrane separation and heterogeneous catalysis. The fundamental mechanism underlying interfacial transport remains incompletely understood given the complexity of heterogeneous interfacial molecular interactions and the high nonideality of the fluid involved. Thus, understanding the effects of interface-induced fluid microstructures on flow resistance is the first step in further understanding interfacial transport. Molecular simulation has become an indispensable method for the investigation of fluid microstructure and flow resistance. Here, we reviewed the recent research progress of our group and the latest relevant works to elucidate the contribution of interface-induced fluid microstructures to flow resistance.We specifically focused on water, ionic aqueous solutions, and alcohol–water mixtures given the ubiquity of these fluid systems in modern chemical engineering processes. We discussed the effects of the interfaceinduced hydrogen bond networks of water molecules, the ionic hydration of ionic aqueous solutions, and the spatial distributions of alcohol and alcohol–water mixtures on flow resistance on the basis of the distinctive characteristics of different fluid systems.  相似文献   

13.
The tribological performance of silicon carbide (SiC)/graphene nanoplatelets (GNPs) composites is analysed under oscillating sliding tests lubricated with isooctane, looking to explore their potential as components for gasoline direct injection (GDI) engines. High graphene filler contents (20?vol.% of GNPs) are required to substantially reduce the friction coefficient of SiC ceramics, attaining decreases on friction up to 30% independently of the applied load. For all materials and testing conditions a mild wear regime is evidenced. SiC/20?vol.% GNPs composite also enhances the wear resistance up to 35% at low load, but the addition of GNPs produces a deleterious effect as the load augments. The tribological behaviour depends on the formation and destabilization of a solid lubricant carbon-based tribofilm and strongly correlates with the mechanical properties of the tested materials.  相似文献   

14.
The tribological behaviors of novel porous Polyetheretherketone (PEEK) composites under 1‐hexyl‐3‐methylimidazolium tetrafluoroborate ionic liquid lubricated condition were investigated. The effect of sliding velocity and applied load on the sweating tribological properties and the stability of lubricating oil film was also studied. Results indicated that when the sliding velocity was 0.69 m/s and the applied load was 250 N, the friction coefficient and wear rate of the ionic liquid lubricated porous sweating activated carbon fiber/polytetrafluoroethene/PEEK composites showed the minimum values, were 0.0197 and 4.145 × 10?15 m3/Nm, respectively. The friction coefficients fluctuated in a narrow range of 0.0162–0.0215. It was found that the porous sweating PEEK composites under ionic liquid lubricated condition showed good low‐friction and antiwear performance, especially under the condition of high sliding velocity and applied load. The formed transfer film due to the tribo‐chemical reaction as well as boundary lubricating film is effective in improving the carrying capacity and antiwear properties of the porous sweating PEEK composites. © 2014 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2014 , 131, 40989.  相似文献   

15.
The use of superplasticizers to obtain concretes that are highly workable, easy to place in formwork and require no vibration has spread throughout Europe in the last few years. The placing process for fresh, so-called self-compacting concrete (SCC) depends on the friction that occurs at the concrete/wall interface.A rectilinear movement tribometer was developed to characterize SCC. The effect of several parameters affecting the concrete/metal plate friction coefficient is examined. These parameters include the roughness of the plate, the sliding velocity against the plate, the pressure or normal stress and the nature of the demoulding agent at the concrete/wall interface. Physical mechanisms are proposed.  相似文献   

16.
In this paper we demonstrate several series of experiments for the measurement of viscosity of neat glycerol and its aqueous solutions using a tank-tube viscometer. Measuring viscosity of highly viscous liquids with the tank-tube viscometer is easier than other types of viscometers. This inexpensive viscometer continuously generates numerous reproducible viscosity data of highly viscous neat glycerol and its aqueous solutions under given experimental conditions such as a desired temperature and a desired concentration of water in aqueous glycerol solutions.

Fabricating the tank-tube viscometer is inexpensive, since this viscometer does not need sophisticated accessories such as a high-pressure liquid pump, a sensitive pressure sensor, and an accurate flow meter. The tank-tube viscometer consists of a large-diameter reservoir and a long, small-diameter, vertical tube.

The viscosity equation was developed under the following assumptions. Both the quasi steady state approach and the negligible friction loss due to a sudden contraction between the reservoir tank and the tube are valid. The kinetic energy of the emerging stream from the bottom end of the vertical tube of the tank-tube viscometer also is assumed to be negligible. Very viscous glycerol and its aqueous solutions were used to test the viscometer by comparing viscosity values from the viscometer with those from literatures.

The main objective of this study is to demonstrate effects of water as well as temperature on viscosity of aqueous glycerol solutions, applying experimental data of accumulated amounts of aqueous glycerol solutions at various drain durations to the newly-developed viscosity equation for the fabricated tank-tube viscometer.  相似文献   

17.
A simple model based on an energy balance which takes into account the friction losses at the gas-liquid interface and the slip velocity of single bubble is used to simulate the gas holdup in bubble columns containing Newtonian and non-Newtonian liquids which circulate in both laminar and turbulent flows. Experimental data available from the literature for bubble columns up to 7 m height and 1 m diameter with water and glycerol as Newtonian liquids and different solutions of CMC in a wide range of concentrations as non-Newtonian liquids are simulated with good agreement despite the simplifications made to describe the gas liquid flow regimes. Most of the differences between experimental and calculated gas holdup are justified on the basis of the simplifying assumptions.  相似文献   

18.
The gas–liquid interfacial area and mass transfer coefficient for absorption of oxygen from air into water, aqueous glycerol solutions up to 1.5% (w/w) and fermentation medium containing glucose up to a 3% concentration were determined in a co‐current down flow contacting column (CDCC; 0.05 m i.d. and 0.8 m length). Experimental studies were conducted using various nozzle diameters at different gas and re‐circulation liquid rates. Specific interfacial area (a) is determined from the fractional gas hold‐up (εG) and the average bubble diameter (db). Once the interfacial area is determined, the volumetric mass transfer coefficient (kLa) is then used to evaluate the film mass transfer coefficient in the CDCC. The effects of operating conditions and liquid properties on the specific interfacial area were investigated. The values of interfacial area in air–aqueous glycerol solutions and fermentation media were found to be lower than those in the air–water system. As far as experimental conditions were concerned, the values of interfacial area obtained from this study were found to be considerably higher than those of the literature values of conventional bubble columns. The penetration theory is used to interpret the film mass transfer coefficient and results match the experimental kL data reasonably well. Copyright © 2006 Society of Chemical Industry  相似文献   

19.
Oxygen absorption rates were measured to determine volumetric coefficients of gas-liquid mass transfer coefficients kLa in gas-liquid and gas-liquid-solid upward flows through a vertical tube. The liquid was deionized water or aqueous glycerol solution, and the solids were glass beads or polystyrene beads. The dependencies of kLa on gas velocity, liquid velocity, temperature, solid material, and solid concentration were examined. The experimental results were correlated with empirical equations. The mechanisms of the solid loading effect are discussed.  相似文献   

20.
研发了竖直管外环状弹性壁降膜分布器,可以产生微米量级厚度均匀的超薄降膜流动。由弹性薄壁轴对称变形协调性决定,该布膜器具有均匀性和稳定性内在机理。理论分析导出了初始膜厚及布膜流量与布膜器内液柱高度的线性关系,并通过布膜器操作参数及降膜流量等实验数据进行了验证。实验结果表明,该布膜器对降膜管壁的润湿性能已经达到由固液界面性质决定的最小润湿流率。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号