首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 390 毫秒
1.
Precise control over the nanofluid behavior of polyelectrolyte-based membranes is a primary step toward understanding the structure-morphology-property relationships to ultimately determine the mass transfer characteristics. In this study, a high-performance multistacked polyelectrolyte-based cation exchange membrane (CEM) with a heterogeneous structure and versatile surface chemistry was developed to achieve selective ion conductance. The self-assembled CEM can facilitate ion permeation with fluxes of 2.9 mol m−2 h−1 for K+ and 0.22 mol m−2 h−1 for Mg2+, reaching a mono/multivalent ionic selectivity of up to 13, outperforming mono/divalent fractionation when compared with state-of-the-art membranes. Molecular dynamic (MD) simulations illustrated the ionic transport trajectory in hierarchical channels with angstrom-scale cavities using multilayered CEMs. Both the experimental measurements and theoretical simulations indicated that ionic fractionation was associated with a large disparity in the energy barrier between mono/multivalent cations, which was the primary origin of the differences in the ion dehydration-rehydration processes in the angstrom-confinement membrane ion channels.  相似文献   

2.
Novel sulfonated poly(ether ether ketone ketone)s were prepared directly by nucleophilic polycondensation. They showed excellent thermal stability and good solubility and could be easily cast into tough membranes. The sulfonated membranes showed swelling of 16.08–26.71% and an ion‐exchange capacity of 1.01–1.57. The transport properties of different cations (H+, Na+, and K+) of membranes based on these polymers were evaluated. The potential for ion‐exchange membranes looks good. © 2005 Wiley Periodicals, Inc. J Appl Polym Sci 98: 2481–2486, 2005  相似文献   

3.
In this paper, the migration of Ca2+, Mg2+, Na+ and K+ in cation-bed electrodeionisation was studied. The results showed that it was longer for divalent cations to be balanced compared with monovalent cations. At relatively low current densities, the membrane fluxes of monovalent cations were higher than that of divalent cations, whereas the results were reversed at relatively high current densities. In the resin phase, it was observed that the ionic transport was in relation to various hydration ionic radii. The reaction orders for Ca2+, Mg2+, Na+ and K+ were 2, 2, 1 and 1.5, respectively.  相似文献   

4.
This study explores the ion transport properties of self-microporous polymers by introducing a novel combination of carboxylated PIM-1 with sulfonated graphene oxide (SGO) to fabricate membranes. The resulting membranes exhibit enhanced structural stability, hydrophilicity, and ion exchange capacity (IEC) compared with the original carboxylated PIM-1 (CPIM-1), while preserving the subnanoporous structure. However, it was observed that excessive SGO loading leads to a detrimental “blocking effect” that compromises various membrane properties. Through electrically driven ion transport tests in a 0.01 M NaCl solution, it is demonstrated that a moderate amount of SGO effectively enhances membrane conductivity from 46.96 μS m−1 (for carboxylated PIM-1 membranes without SGO) to 56.55 μS m−1. Additionally, the membranes exhibit selective sieving of cations and anions. The presence of small-sized ion channels and the electrostatic repulsion generated by the abundant carboxyl and sulfonic acid groups significantly hinder Cl transport. Consequently, the Na+/Cl migration ratio (t+/t) reaches 98 at a concentration ratio of 10:1 on both sides of the membrane, surpassing the value of 3.74 observed for the pure CPIM-1 membrane. This investigation provides valuable insights for the practical application of easily prepared, processable, and cost-effective hydrophilic self-contained microporous polymer membranes in ion transport applications.  相似文献   

5.
Cation exchange membranes (CEMs) hold promise for efficient and environment‐friendly lithium extraction from salt‐lake brine. However, development and practical application of CEMs are significantly hindered by the low Li+ permeation and permselectivity. Herein, novel hybrid CEMs are developed by dispersing lithium ion‐sieves (LMO) into sulfonated poly(ether ether ketone) matrix. Two kinds of LMOs are synthesized including acidified LMO (HMO) and its sulfonation compound (HMO‐S). The physicochemical property and separation performance of hybrid membranes are systematically investigated. The uniformly dispersed HMO and HMO‐S enhance the thermal, mechanical stability, and swelling resistance of hybrid membranes. Furthermore, these fillers obviously reduce the area resistance from 8.0 to less than 6.0 Ω cm?2. Importantly, the unique Li+ transfer channels in HMO/HMO‐S efficiently elevate the Li+ permeation by up to 66%. While the “ion‐sieve effect” of the channels weakens the migration of Mg2+ and K+, thus notably rising Li+/Mg2+ and Li+/K+ permselectivities by ≈5 times, which is difficult to realize with conventional fillers. Comparing with HMO, HMO‐S shows higher improvement for permselectivity because of the reduced area resistance of the resultant hybrid membrane. This study paves a way to design and development of selective Li+ exchange membranes for transport and separation applications.  相似文献   

6.
The complexation ability of some linear crown ether‐siloxane copolymers of ester or amide type with cations as K+ and NH4+ was investigated spectrophotometrically in order to select the polysiloxane receptors that achieve good ion transport ability by bulk liquid membrane systems. The transport properties of the potassium picrate through a liquid membrane using siloxane‐crown ether polyamide as carrier were discussed.  相似文献   

7.
It is well known that cation exchange membranes, having a very thin layer of a cationic polyelectrolyte on the membrane surface, have preferential permselectivity for monovalent cations in a monovelent-divalent cations system. We studied the relationship between preferential permselectivity and molecular structure of the cationic polyelectrolyte. Grafted poly(4-vinyl-N-methylpyridinium-iodide) was used and was compared with poly(4-vinyl-N-methylpyridiniumiodide). The backbone polymers were poly(styrene-co-p-benzylstyrene) and poly(benzyl), onto which 4-vinylpyridine was grafted by anionic polymerization and then quaternized with CH3I. The grafted poly(4-vinyl-N-methylpyridinium-iodide) is effective in making the cation exchange membrane preferentially permselevtive for Na+ - Ca2+ system and is more preferable than poly(4-vinyl-N-methylpyridinium-iodide) in terms of electric resistance of the membrane. However, the relationship between the molecular structure of the cationic polyelectrolyte and the durability of the preferential permselectivity is not clear.  相似文献   

8.
This study investigated the influence of pH of adsorption medium and co-adsorptive metal cations for the adsorption of potassium (K+) and magnesium (Mg2+) ions onto poly (vinylidene fluoride) grafted poly(acrylic acid) (PAA-PVDF) membrane. At pH 4.8, the adsorption of potassium and magnesium was minimal, because of nearly non-dissociated carboxylic acid groups of PAA-chains, but adsorption increased with increasing ion concentration. The interaction of the studied cations between PVDF-PAA membranes increased considerably at pH 7.0 the dissociation of carboxylic acid groups of PAA. The addition of ionic substances (calcium (Ca2+) and sodium (Na+) to the adsorption medium reduced the adsorption of potassium and magnesium onto the membrane, because of co-adsorption. Divalent calcium reduced more effectively than univalent sodium the adsorption of potassium and magnesium onto the membrane. In conclusion, co-adsorbing ions reduced the adsorbed amount of potassium and magnesium ions due to binding competition. The percentual adsorbed values suggest that adsorption affinity of studied ions onto the PVDF-PAA membrane followed the order Na+ < K+ < Mg2+ < Ca2+. The effect of metal cations on drug adsorption from biological fluids needs research in the future, because e.g. PVDF-PAA membrane has been used in drug separation processes.  相似文献   

9.
L. Wu  D. Zhou  H. Wang  Q. Pan  J. Ran  T. Xu 《Fuel Cells》2015,15(1):189-195
For improving stability without sacrificing ionic conductivity, ionically cross‐linked proton conducting membranes are fabricated from Na+‐form sulfonated poly(phthalazinone ether sulfone kentone) (SPPESK) and H+‐formed sulfonated poly(2,6‐dimethyl‐1,4‐phenylene oxide) (SPPO). Ionically acid‐base cross‐linking between sulfonic acid groups in SPPO and phthalazone groups in SPPESK impart the composite membranes the good miscibility and electrochemical performance. In particular, the composite membranes possess proton conductivity of 60–110 mS cm−1 at 30 °C. By controlling the protonation degree of SPPO within 40–100 %, the composite membranes with favorable cross‐linking degree are qualified for application in fuel cells. The maximum power density of the composite membrane reaches approximately 1100 mW cm−2 at the current density of 2800 mA cm−2 at 70 °C.  相似文献   

10.
Novel membranes based on sulfonated poly (phenylene oxide) (SPPO) was developed. SPPO membranes in the hydrogen form were converted to metal ion forms. The effect of exchange with metal ions including monovalent (Li+, Na+, K+), divalent (Mg2+, Ba2+, Ca2+) and trivalent (Al3+) ions was investigated in terms of permeation rate and permeation rate ratios for CO2 and CH4 gases. Both dense homogeneous membranes and thin‐film composite (TFC) membranes were studied for their gas separation characteristics. The effect of membrane preparation conditions and operating parameters on the membrane performance were also investigated. The selectivity of the TFC membrane increased as the cationic charge density increased as a result of electrostatic cross‐linking. TFC membrane of very high selectivity was achieved by coating a thin layer of SPPO‐Mg on a PES substrate. © 2000 John Wiley & Sons, Inc. J Appl Polym Sci 76: 735–742, 2000  相似文献   

11.
Porous Keplerate-type molybdenum-oxide nanocapsules – encapsulated into cationic surfactants – act as transporting systems for alkali cations through supported liquid membranes. The transport is based on the ability of the nanocapsules containing water molecules inside their cavities to attract and release the cations. This results in specific nanoscaled translocation pathways, based on corresponding dynamic diffusional domains within the liquid bulk membrane phase, due to the self-assembly of the capsules. Li+ cations are preferentially extracted and transported, thus allowing separation from Na+ and K+ cations, which are not transported to the receiving phase.  相似文献   

12.
In this study the fouling behavior of alginate in the presence of monovalent ions (i.e., NaCl, KCl, CsCl, NaBr, and NaI) was explored. Results showed that alginate tended to be less negatively charged in the presence of monovalent ions. The cation ion identity had a more substantial impact on the zeta potentials of alginate solution than the anion ion identity, which was likely due to preferential attraction between alginate and cation ion. Nevertheless, significantly increased particle size was observed for alginate in 150 mM CsCl, possibly arising from the specific interaction between alginate and Cs+. Membrane fouling was more severe for alginate in monovalent solutions, particularly at 150 mM ionic strength. The unified membrane fouling index was increased by cation and anion ions in the order of Na+ > K+ > Cs+ and Cl? > Br? > I?, respectively. Nevertheless, the addition of monovalent ions could promote the fouling reversibility. © 2016 American Institute of Chemical Engineers AIChE J, 62: 2501–2507, 2016  相似文献   

13.
In this article, a redox-responsive poly(ionic liquid) (redox-PIL) hydrogel Poly(1-vinyl-3-propionate imidazole phenothiazine sulfonic acid)-chitosan [Poly(VPI+PTZ-(CH2)3SO3)-CS] was produced by using chitosan (CS) crosslinking with redox-PIL Poly(1-vinyl-3-propionate imidazole phenothiazine sulfonic acid [Poly(VPI+PTZ-(CH2)3SO3)]. The incorporation of redox-active counter anions 3-(phenothiazine-10-yl) propane 1-sulfonic acid anions (PTZ-(CH2)3SO3) into cationic PIL-polyimidazole rendered Poly(VPI+PTZ-(CH2)3SO3) with electron catalytic ability, ionic conductivity, and electron conductivity. Poly(VPI+PTZ-(CH2)3SO3)-CS combines the properties of hydrogel and redox-PIL, thus offering intrinsic porous conducting frameworks and promoting the transport of charges, ions, and molecules, leading hydrogel with excellent electrochemical properties. The crosslinking occurrence of Poly(VPI+PTZ-(CH2)3SO3) and CS resulting from the synthetic process of hydrogel was verified by differential scanning calorimetry and thermogravimetric analysis. A three-dimensional polymer network hydrogel with good biocompatibility and permeability was formed after crosslinking. In addition, only 64% weight loss within 600 °C was observed in Poly(VPI+PTZ-(CH2)3SO3)-CS representing its thermally stable performance. When used as an electrochemical sensor, the hydrogel-modified gold electrode improved the electrocatalytic oxidation of cysteine. Differential pulse voltammetry results indicated that the detection range was from 5 × 10−8 to 5 × 10−3 M and the limit of detection was 6.64 × 10−8 M. © 2019 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2019 , 136, 48051.  相似文献   

14.
The SPEEK/s-TiO2 composite membrane was prepared by blending sulfonated poly(ether ether ketone) (SPEEK) and sulfonated titanium dioxide (s-TiO2) nanoparticles. The important physiochemical parameters such as proton conductivity, water uptake, swelling degree and ion exchange capacity of the composite membrane were measured. The thermal stability and chemical stability were also tested. It was observed that the SPEEK/s-TiO2 composite membrane exhibited the best selectivity (7.13 × 104 S·min·cm−3) accompanying high proton conductivity (0.061 S·cm−1) and low tetravalent vanadium ion (VO2+) permeability (8.55 × 10−7 cm2·min−1) compared with Nafion117, SPEEK and SPEEK/TiO2 membranes. The battery performance with these membranes was characterized by charge–discharge cycling tests and it was found that the SPEEK/s-TiO2 composite membrane showed the highest energy efficiency (EE) up to 82.3%, indicating the SPEEK/s-TiO2 composite membrane is a candidate for vanadium redox flow battery (VRFB) application. © 2019 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2020 , 137, 48830.  相似文献   

15.
《分离科学与技术》2012,47(9):1193-1215
Abstract

The selectivity in water and methanol solvents of macrocyclic crown ether ligands toward univalent and bivalent cations is well known. Incorporation of these ligands into chloroform liquid membranes separating water and salt solution phases results in a system showing selective cation transport. The cation transport rates of single cations across these liquid membranes have been correlated with equilibrium constant values for cation-macrocycle interaction in methanol. This correlation has been extended to binary cation mixtures of Cs+ with Li+, Na+, K+, and Rb+. A model for cation transport from these cation mixtures has been reduced to an equation which gives good agreement between measured and predicted transport rates across our liquid membranes.  相似文献   

16.
A novel amphoteric ion exchange membrane for vanadium redox flow battery (VRFB) was explored by blending sulfonated poly(ether ether ketone) (SPEEK) and ammonium polyphosphate (APP). The high-stability flame retardant of cross-linked APP with a large number of NH4+ groups was first introduced into SPEEK membrane. It was observed that the addition of APP with special structure could achieve a good balance between proton conductivity and vanadium ions permeability. The abundant NH4+ in APP could block the penetration of vanadium ions by Donnan/Manning exclusion effect and ionic crossing networks due to the ionic bonds between cation and anion groups, and specially a small amount of APP within 5% could remarkably improve the proton conductivity of pristine SPEEK membrane might be ascribed to the unique fast proton transport channels formed by hydrogen bond networks and particular micro-phase separation as a result of interaction between SPEEK and APP. When 5% APP was blended, the SPEEK/APP-5% (S/APP-5%) amphoteric membrane showed a higher selectivity of 20.87 × 104 S min/cm3 (with a good proton conductivity of 0.075 S/cm and a lower VO2+ permeability of 3.45 × 10−7 cm2/ min) and presented better thermal and chemical stability compared to Nafion115 and SPEEK membranes. The VRFB single cell assembled with S/APP-5% amphoteric membrane exhibited more excellent performance than that of Nafion115 and pristine SPEEK membranes, which revealed a higher coulombic efficiency of 96.3%–98.3%, comparable voltage efficiency of 88.4%–78.7% and higher energy efficiency of 85.1%–77.4% from 40 to 80 mA/cm2, respectively, and showed relatively good stability of the efficiency up to 50 cycles at 60 mA/cm2. The results demonstrated that the designed S/APP amphiprotic membrane of outstanding selectivity, high battery efficiency, and good durability is a prospected VRFB separator.  相似文献   

17.
The feasibility of nanofiltration membranes fabricated by static polyelectrolyte layer‐by‐layer deposition of poly(styrene sulfonate) and poly(allylamine hydrochloride) on poly(ether sulfone) ultrafiltration and alumina microfiltration membranes for the recovery of ionic liquid from low molecular weight sugar was investigated. The surface properties of these modified membranes were correlated with their performances. The selectivity for 1‐butyl‐3‐methylimidazolium chloride over cellobiose and glucose was found to be as high as 50.5/2.3 for modified alumina and 32.3/3.5 for modified poly(ether sulfone) membranes with optimized number of bilayers. The values for membrane permeance were 4.8 and 2.5 L m?1 h2 bar?1, respectively. For low depositions, the separation mechanism was predominantly governed by size‐exclusion. For higher depositions, the enhanced negative zeta potential of the modified membranes suggested preferred dominating electrostatic interactions, resulting in high selectivity of ionic liquids over low molecular weight sugars. At very high depositions, the molecular weight cut‐off of the membrane becomes constricting for size‐exclusion effect. © 2017 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2017 , 134 , 45349.  相似文献   

18.
A series of novel asymmetric membranes from polymer composites of poly(amide-imide) with various content of sulfonated polyimide (1–6 wt%) was obtained through the nonsolvent-induced phase separation process. Selective transport properties of the obtained materials were investigated in terms of pervaporation separation of methanol/methyl-tert-butyl ether mixtures at different temperatures. The introduction of the sulfonated polyimide to the poly(amide-imide) matrix leads to a significant increase in membrane flux and an overall decrease in the process selectivity. Composite membranes having 1 wt% sulfonated polyimide in the matrix showed increased values of membrane flux (0.960 kg m−2 h−1 in comparison with 0.682 kg m−2 h−1 for unmodified membranes at 40°C, 10 wt% methanol), while having similar selectivity values (79.2 wt% methanol in permeate in comparison with 82 wt% for unmodified membranes at 40°C, 10 wt% methanol). Modified membrane showed the highest separation factor of 147 while separating methanol from its 3 wt% mixture with methyl-tert butyl ether at 52°C with the overall flux of 1.01 kg m−2 h−1. A semiempirical mathematical model was developed and applied to test the efficiency of obtained membranes in the hybrid process of methanol/methyl-tert-butyl ether mixtures separation.  相似文献   

19.
The Derjaguin–Landau–Verwey–Overbeek (DLVO) theory has been extensively used to explain colloid stability. This study investigated the effect of demixing of monovalent and divalent cations and crystalline swelling on the breakup and formation of smectite quasicrystals (QCs) and how these processes affect flocculation and dispersion of natural soil clay–humic complexes. The results indicated that in a Ca-dominated system the formation of large QCs enhanced flocculation and that increasing the concentration of Na+, K+, or NH4+ resulted in the breakup of large Ca-QCs, which enhanced dispersion. In low ionic strength systems, dispersion was caused by expanded double layers (DLVO) and the formation of small QCs. X-ray diffraction analyses showed that as large Ca-QCs breakup, monovalent cations resided primarily on the external surfaces and Ca2+ was preferentially retained in the interlayers. In high ionic strength systems increasing concentrations of monovalent cations also decreased the size of QCs but the effect was partially counteracted by compression of double layers between QCs. X-ray diffraction analyses indicated that monovalent cations were sorbed on both the external surfaces and in the interlayers in high ionic strength systems.  相似文献   

20.
Summary The cationic fluorophore Auramine-0 strongly interacts with poly(vinylbenzo-18-crown-6), a polymer which in water behaves as a typical polysoap. The intrinsic binding constant at 25°C was found to be 2.2 × 104 M–1. The binding can be modified by adding crown ether-complexable cations such as K+ or Cs+. Complexation converts the neutral polycrown ether into a polycation causing repulsion of the cationic fluorophore and a decrease in the observed fluorescence. There is some indication that the cation of the dye specifically interacts with a crown ligand.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号