首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到16条相似文献,搜索用时 156 毫秒
1.
如何在增强散热效果的同时降低阻力损失已成为解决中央处理器(CPU)芯片水冷散热问题的关键。本文从翅柱数量、分布、结构以及冷却流体进出口方式等方面对3种水冷散热器进行实验研究,分别在控制冷却流体流量和热流密度的条件下比较不同翅柱结构的压力损失、芯片温度及散热器热阻,得知散热器四角带有导流结构以及水滴形翅柱结构的散热器在热流密度为80W/cm~2、流量为20mL/s时,芯片温度分别为65.5℃和55.5℃,其热阻分别为0.19K/W和0.14K/W,散热性能均优于传统圆柱形翅柱散热器。在流量为60mL/s时,圆柱形翅柱散热器四角设置导流板及水滴形翅柱结构散热器的进出口压力损失分别为34kPa和32kPa,压力损失均小于传统圆柱形翅柱散热器。实验表明在圆柱形翅柱散热器的四角设置导流板,或者改变翅柱形状为水滴形,不仅可强化对流换热,而且可降低流动阻力。  相似文献   

2.
王亚雄  张博 《化工进展》2015,34(3):675-679,694
旨在开发一种热电制冷装置(TEC), 实现微电子设备芯片低于环境温度的冷却, 解决芯片超频运行后的散热问题。为了研究该装置的制冷效果, 将其串联在传统液冷散热系统中。通过搭建实验测试平台, 对该装置在不同环境温度、芯片不同热流密度、不同工况和不同制冷效率下的制冷性能进行了实验研究。研究表明, 维持热源表面温度与环境温度相等、TEC工作电压48V、风速3~5m/s的条件下, 散热能力可达7W/cm2。散热器工作在高环境温度(35℃)下, TEC能有效降低散热阻力, 提升最大散热量。当热流密度为23.78W/cm2、风速为5m/s时, TEC工作在16~48V电压值下, 热源表面温度最大降低5.4℃。实验研究同时显示, 传统液体散热系统对提升TEC能效比(COP)有较积极的作用。维持热源表面温度比环境温度高10℃、TEC输入电压4~48V、风速3~5m/s情况下, 最大能效比达3.5, 最大热流密度达到15W/cm2。  相似文献   

3.
旨在开发一种新型热电制冷液体冷却装置,解决微电子设备芯片超频运行后的冷却问题。通过搭建实验测试平台,对该新型冷却装置在不同热通量、不同工况以及热电制冷器(TEC)在不同工作电压下的传热性能进行了实验研究。研究表明,限定热源表面温度(65℃)时,该散热器在实验风速7~13 m·s-1的条件下,最大散热能力可达45.2 W·cm-2,装置最低总热阻为0.107℃·W-1;当热通量为28.5 W·cm-2、风速为9 m·s-1和13 m·s-1时,TEC工作在最佳电压值下,使热源表面温度分别降低4.0℃和4.6℃。实验结果同时表明,新型热电制冷液体冷却装置的制冷性能与TEC工作电压相关,当热通量为28.5 W·cm-2、风速为9 m·s-1和13 m·s-1时,最佳工作电压分别为28 V和32 V。  相似文献   

4.
崔卓  诸凯  王雅博  魏杰 《化工进展》2016,35(5):1338-1343
与平行流水冷散热相比,现阶段对喷射流水冷散热的研究报道较少。为了研究喷射流结构的散热效果,本文设计了两种喷射流结构的水冷散热器,搭建了以去离子水为冷却介质的液冷散热器实验台,调节实验的热流密度及冷却水流量在不同条件下观察芯片温度及散热器底板温度的变化,得到了不同热流密度下芯片温度、散热器底板温度及热阻随冷却水流量的变化规律。散热器内部针翅结构和冷却水流动方式的改变可使芯片温度降低5~8℃,散热器底板平均温度也相应降低4℃左右,且底板温度梯度较小。同时,热阻的变化随流量增大逐渐变缓,散热器结构改进使热阻减小了7%~8%。实验结果表明,改进结构的散热器能有效加强边角区域流体的扰动,提升散热器整体的换热效率,表明喷射流水冷散热是一种高效的散热方式。  相似文献   

5.
微槽群蒸发器在电子芯片冷却方面的应用   总被引:12,自引:2,他引:10       下载免费PDF全文
利用微槽群蒸发型热沉技术设计了一种新颖的用于电子芯片散热的微槽群蒸发器,对影响微槽群蒸发器散热性能的各种因素进行了实验研究.实验结果表明,采用适当的真空度和液容率,可以提高微槽群蒸发器的散热效果.通过与主流的奔腾4 CPU芯片风冷散热器的散热性能比较发现,在低于芯片许容上限温度(100 ℃)的范围内,微槽群蒸发器具有更高的散热热流密度;微槽群蒸发器更适用于具有高发热热通量和热敏性强的高性能电子芯片的冷却.  相似文献   

6.
随着CUP芯片的高频高速化以及集成电路的小型化高密度装配,芯片的发热量也不断增大,其散热问题已经变得越来越突出,而水冷技术以其优越的散热效果在大型计算机CPU芯片冷却设备中得到广泛应用。在进行水冷散热器的结构设计时,由于流体流动空间小,运动比较复杂,常用的实验检测方法具有一定局限性。本文通过建立CPU芯片水冷式散热器的翅片式、翅柱式、交叉柱式三种结构的三维物理模型,进行了内部冷却水流动与传热的数值模拟计算和结果的可视化处理,得到了不同内部结构下散热器内冷却水的温度场分布,为散热器结构的优化设计提供了理论依据,并通过比较分析,得出翅柱式结构散热器的散热效果较好。  相似文献   

7.
平板微热管阵列及其传热特性   总被引:10,自引:5,他引:5  
研制了结构紧凑的带有微结构的平板微热管阵列,并对其充装不同工质时的传热性能进行测试。同时对热管内充装不同工质时的热通量进行了测试。结果表明,在使用甲醇、乙醇、丙酮、R141b为工质的情况下该平板微热管阵列的散热效果良好,其中甲醇为工质的散热器在保证芯片表面正常的工作温度下的最大热通量及总热量输运能力分别达到102 W·cm-2及102 W以上。最高热通量可达200 W·cm-2。以甲醇为工质的不同充液率实验表明,平板微热管阵列的热通量随充液率的不同而有所变化,最佳充液率为0.3。  相似文献   

8.
为解决电子设备高热通量下的散热问题,采用H2O2氧化法对烧结毛细芯进行了超亲水改性,研究了毛细芯表面润湿性对吸液性能的影响。并将改性后的超亲水毛细芯应用到环路热管内,研究了倾斜角度及加热功率对超亲水毛细芯环路热管的换热特性的影响。实验结果表明:超亲水毛细芯的吸液速度增加,吸液时间较亲水毛细芯减小了3.52ms;与普通亲水毛细芯环路热管相比,在加热功率Q=200W时,超亲水毛细芯环路热管蒸发器中心温度降低了约6.0℃,在Q=20W时启动时间与温度分别降低了33s与2.5℃。同时发现超亲水毛细芯环路热管在正重力状态时的运行温度更低,热阻较小,最低热阻仅为0.084℃/W。  相似文献   

9.
介绍了一种超亮光内三角中空仿锦纶涤纶全拉伸丝(FDY)生产工艺,通过对喷丝板的设计、纺丝和卷绕工艺等进行试验,探索得到最佳工艺参数。试验表明,在纺丝温度291~295℃、冷却风温度22℃、风速1.55 m/s、GR1速度4 750 m/s、GR2速度4 800 m/s、GR2温度120℃、卷绕速度4 800 m/s的工艺条件下,生产的FDY的断裂强度为2.77 cN/dtex,断裂伸长率为45.1%,中空度为15%。  相似文献   

10.
王飞  王建民  邵双全 《化工学报》2021,72(Z1):348-355
数据中心冷却系统将IT器件的产热散发到室外环境中去要经过多级传热,本文采用与温差的方法对多级传热进行分析,结论如下:数据中心冷却为在一定温差ΔT驱动下利用载体将芯片散发的热量搬运到室外的过程,过程中存在着热量采集/传热温差ΔT1损失以及冷源系统排热温差ΔT2损失;通过减小芯片散热损失,降低气流掺混损失与换热器损失,降低总传热温差ΔT,实现空调系统充分利用自然冷源,运行在完全自然冷却区;当空调系统在完全自然冷却区域运行热管模式时,重力热管COP最高,液泵热管次之,一般高达40~80,甚至超过400,气泵热管最低,并且气泵是现有制冷压缩机COP最高点,可达15~30;当室内外温差小于ΔT2时,利用补偿温差原理使得制冷循环更加接近热管循环,实现制冷系统最低能耗运行,为数据中心冷却系统节能减排优化提供新的方法。  相似文献   

11.
王岗  赵耀华  全贞花  王宏燕 《化工进展》2019,38(5):2123-2131
搭建了平板热管测试实验台,对不同充液率下热管性能进行了实验研究,并以最佳充液率的热管为研究对象,分析了加热功率、冷却水温及冷却水流速对热管性能的影响。实验结果表明:充液率为20%和30%时热管在各加热功率下展现了良好的性能,最小热阻为0.18℃/W和0.19℃/W,热导率为8158W/(m·℃)和8540W/(m·℃)。由于沸腾换热滞后性,相较于功率增加,功率减少时热管性能更优,同等加热功率条件下蒸发段温度更低。功率增加和功率减少对热管蒸发段热阻影响较大,而冷凝段热阻几乎不受影响。当冷却水温为17℃和22℃时,热管蒸发段温度比冷却水温为7℃和12℃时蒸发段温度低2℃左右。相较于冷却水温22℃时,冷却水温为17℃时热管蒸发段温度能更快达到稳定值。冷却水流速影响蒸发段温度及达到稳定运行的时间,实验表明热管工作的最佳冷却水流速为5.81g/s。  相似文献   

12.
王亚雄  田智凤  韩晓星 《化工进展》2012,31(8):1707-1710
提出了一种新型平板热管散热器,通过建立实验平台,研究了它在不同热源数量、不同的热源位置以及不同风速下的传热性能。实验表明,这种平板热管散热器散热量大,总热阻小,而且在热源数量增加时,最大传热量和最大散热能力增大,总热阻减小。在规定热源温度65 ℃以下时,其热传输量将近400 W,非常适合于高热流密度、多散热点的电子器件散热。  相似文献   

13.
蔡坚锋  王长宏  冯杰 《化工学报》2020,71(z2):111-117
为探究多级针-网式离子风散热系统的性能和针对多级离子风散热装置进行优化设计,提出一种多级针-网式离子风散热系统装置,研究多级级数、级间隙、放电电压对离子风最大风速和发热片的散热温降的影响。结果表明,在相同电压时,多级比单级散热性能更好,能把11 W的发热片降低到更低的温度,并获得更大的离子风最大风速。多级装置离子风最大风速可达2.6 m/s,能把11 W的发热片温度降到90℃左右,温降可达105℃左右,而单级只能降到110℃,温降约85℃。  相似文献   

14.
In order to explore the performance of the multistage pin-mesh ionic wind cooling system and optimize the design for the multistage ionic wind heat dissipation device, a multistage pin-mesh ionic wind cooling system device was proposed to study the effect of multistage number, stage clearance, and discharge voltage on the maximum wind velocity of the ionic wind and the heat dissipation temperature drop of the heating plate. The results show that at the same voltage, the multistage heat dissipation performance is better than the single-stage, which can reduce the 11 W heating plate to a lower temperature and obtain a larger maximum wind velocity of the ionic wind. When the maximum wind velocity of the ionic wind reaches the maximum value, it does not mean that the heat dissipation performance is the best, because the optimal heat dissipation performance can be achieved when the average wind velocity reaches the maximum value. The multistage device using the pin-mesh integrated structure has a maximum wind velocity of 2.6 m/s, which can reduce the temperature of the 11 W heating plate to about 90℃ and the temperature drop to about 105℃, while the single-stage can only drop to 110℃ and the temperature drop is about 85℃.  相似文献   

15.
郭枭  邱云峰  史志国  王亚辉  宋力  田瑞 《化工学报》2021,72(10):5384-5395
研究了基于低温辐射散热的储热型太阳能供暖系统。分析了平板热管型太阳能集热器的集热特性和相变储热材料的吸/放热特性,揭示了相变储热单元温度场不均匀度的变化规律,测定了相变储热单元的热传输速率及系统的太阳能综合利用能力,优化了毛细管网运行条件,讨论了系统经济性。结果表明:平板热管型太阳能集热器热损系数为5.5447 W/(m2·K),截距效率为86%;相变储热材料熔点及相变焓分别为55.69℃、163.09 J/g;相变储热单元温度场不均匀度在储热/放热阶段的变化趋势基本一致,平均储热速率和放热速率分别为1.829、1.803 MJ/h;系统的太阳能综合利用能力为0.2132;毛细管网的最佳进口温度和散热温差分别为36、8℃;系统初投资和运维成本分别为225.8、4.28元/m2,静态投资回收期为8.7年。  相似文献   

16.
朱茂川  周国兵 《化工进展》2018,37(12):4646-4653
对毛细管网为末端的小型溴化锂吸收式制冷系统进行实验研究,分析了不同热源水温度、热源水流量、冷却水流量和冷媒水流量分别对溴冷机性能、冷媒水供水温度以及房间温度的影响。实验得出该系统相对较优外部工况为:热源水温度90~92℃,热源水流量1.5m3/h,冷却水流量4m3/h,冷媒水流量2.5m3/h。实验结果表明,提高热源水温度和冷却水流量可以明显增大机组供冷量,但也存在冷媒水供水温度降低,可能造成结露的问题;热源水流量对机组制冷量和冷媒水供水温度影响较小,不适于作为动态调节的依据;改变冷媒水流量是调节系统供冷能力和避免结露的有效手段,冷媒水流量从1.0m3/h升高到2.5m3/h,制冷量升高92.1%,冷媒水供水温度也从16.7℃上升到17.7℃。实验为今后以毛细管网为末端的小型太阳能溴化锂吸收式制冷系统应用调节提供依据和指导。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号