首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 104 毫秒
1.
用于生物标记的半导体量子点研究   总被引:1,自引:0,他引:1  
半导体量子点的独特光学性质使之成为理想的荧光探针材料,在生物医学领域具有广阔的应用前景.本文评述了目前量子点合成、表面修饰、结合生物分子的方法,以及半导体量子点在生物标记应用中相对于传统有机染料的优点.  相似文献   

2.
非硅组成的介孔金属氧化物和硫化物半导体材料在光、电、催化和传感等诸多领域展示了独特的应用前景.介绍了最近几年来国内外有关半导体介孔材料合成和应用的研究动向及最新研究成果,内容包括半导体金属氧化物和硫化物等.  相似文献   

3.
丁云成  王法军  艾宁  徐建鸿 《化工学报》2018,69(11):4542-4552
微反应器一般是指通过微加工和精密加工技术制造的小型反应器,其为微化工技术的核心部件之一。与传统的釜式反应器相比,微反应器具有很大的优势,顺应了高技术含量和可持续发展的要求。在化学化工、材料、生物等诸多领域的研究和生产过程中,微反应器都有着广泛的应用前景,这其中一大部分涉及到了危险或不稳定物质的合成过程及高放热反应过程等。本文主要介绍了国内外利用微反应器技术进行重氮化反应连续化的研究进展,以及利用微反应器进行连续重氮化/偶合反应合成偶氮染料及颜料的研究进展。微反应器技术使化学反应过程变得更快速、更安全、更环保,所以具有很高的工业应用价值,也是化工领域未来的发展方向之一。  相似文献   

4.
微生物合成2,3-丁二醇的代谢工程   总被引:1,自引:0,他引:1       下载免费PDF全文
2,3-丁二醇(2,3-BD)是一种重要的微生物代谢产物,广泛应用于食品、医药、化工等多个领域。微生物合成2,3-BD的效率不高一直制约着其生物制造工业化进程,应用代谢工程的理论和方法优化微生物的代谢途径有望解决这一问题。本文全面总结了近年来微生物合成2,3-BD研究过程中的菌株改造和构建技术,包括过表达合成途径中的关键酶编码基因、敲除旁路代谢途径关键酶编码基因、应用辅因子工程手段对天然菌株代谢网络进行重新设计和合理改造,以及利用合成生物学技术在模式菌株中构建全新的代谢途径,实现2,3-BD的高效生物合成。最后,本文对未来的研究方向进行了展望,提出了进一步利用先进的合成生物学方法构建高效细胞工厂的指导性建议。  相似文献   

5.
2,3-丁二醇(2,3-BD)是一种重要的微生物代谢产物,广泛应用于食品、医药、化工等多个领域。微生物合成2,3-BD的效率不高一直制约着其生物制造工业化进程,应用代谢工程的理论和方法优化微生物的代谢途径有望解决这一问题。本文全面总结了近年来微生物合成2,3-BD研究过程中的菌株改造和构建技术,包括过表达合成途径中的关键酶编码基因、敲除旁路代谢途径关键酶编码基因、应用辅因子工程手段对天然菌株代谢网络进行重新设计和合理改造,以及利用合成生物学技术在模式菌株中构建全新的代谢途径,实现2,3-BD的高效生物合成。最后,本文对未来的研究方向进行了展望,提出了进一步利用先进的合成生物学方法构建高效细胞工厂的指导性建议。  相似文献   

6.
微反应器一般是指通过微加工和精密加工技术制造的小型反应器,其为微化工技术的核心部件之一。与传统的釜式反应器相比,微反应器具有很大的优势,顺应了高技术含量和可持续发展的要求。在化学化工、材料、生物等诸多领域的研究和生产过程中,微反应器都有着广泛的应用前景,这其中一大部分涉及到了危险或不稳定物质的合成过程及高放热反应过程等。本文主要介绍了国内外利用微反应器技术进行重氮化反应连续化的研究进展,以及利用微反应器进行连续重氮化/偶合反应合成偶氮染料及颜料的研究进展。微反应器技术使化学反应过程变得更快速、更安全、更环保,所以具有很高的工业应用价值,也是化工领域未来的发展方向之一。  相似文献   

7.
侯慧  李春 《化工进展》2016,35(6):1837-1844
提高生物基产品的产量和生产效率是生物制造发展的目标。由于微生物具有生长快、营养要求简单和基因操作简便等特点,常用作生物基产品制造过程中的底盘宿主,因此,产品制造过程中微生物细胞的生长与调控尤为重要,其生长调控会直接或间接地影响生物基产品的合成效率。微生物的生长不仅受外界环境如温度、溶氧量、pH等的影响,而且还受微生物本身的生长与调控机制如细胞分裂调控、必需基因表达调控、程序化死亡等的影响。本文综述了利用分子生物学、合成生物学和系统生物学等方法对微生物细胞生长和分裂过程进行分子调控,以提高生物反应速率和目标产物的产量,为化工、食品、生物医药以及环境保护等领域构建高效的生物制造工艺提供新思路。  相似文献   

8.
合成生物学在医药及能源领域的应用   总被引:6,自引:6,他引:0       下载免费PDF全文
刘夺  杜瑾  赵广荣  元英进 《化工学报》2011,62(9):2391-2397
合成生物学是以工程学思想为指导,对天然生物系统进行重新设计与改造,同时设计并合成新的生物元件、模块和系统的崭新学科。合成生物学是自然科学发展到现阶段的产物,并已经在医药、能源等领域取得了一些显著成果。本文综述了在工程细胞中利用合成生物学方法构建抗疟疾药物青蒿素的前体物青蒿二烯,抗癌药物紫杉醇的前体物紫杉二烯,以及脂肪酸酯、脂肪醇、高级醇的合成途径等研究进展。此外,一些重要的合成生物学相关技术,大大加速工程细胞的重构与进化,为构建应用于生产领域的新功能细胞提供方便实用的工具。  相似文献   

9.
杨丰科  王尧 《应用化工》2012,41(12):2150-2153
细菌纤维素是由细菌合成的纯净纳米纤维素构成的网状纤维,具有优良的形态学、生物学、物理学性能以及合成可控性,因此在生物医学材料领域被广泛应用。介绍了近年来细菌纤维素应用于敷料、人造皮肤、组织修复材料和膳食纤维等方面的研究进展,并对其生物降解能力、生物相容性和纤维定向等性能的提高作出了展望。  相似文献   

10.
介绍了丝素蛋白与天然大分子、碳纳米材料、合成聚合物、纳米金属及金属氧化物等材料复合制备丝素蛋白复合膜的方法、性能,总结和分析了丝素蛋白复合膜在生物医药、光电领域和化工分离方面的应用。在此基础上,指出了未来丝素蛋白复合膜的进一步应用研究方向,除了继续在生物医药领域的应用之外,丝素蛋白复合膜材料在光电领域具有很大潜力,同时未来在化工分离领域也有很好的发展前景。  相似文献   

11.
The use of traditional chemical catalysis to produce chemicals has a series of drawbacks, such as high dependence on fossil resources, high energy consumption, and environmental pollution. With the development of synthetic biology and metabolic engineering, the use of renewable biomass raw materials for chemicals synthesis by constructing efficient microbial cell factories is a green way to replace traditional chemical catalysis and traditional microbial fermentation. This review mainly summarizes several types of bulk chemicals and high value-added chemicals using metabolic engineering and synthetic biology strategies to achieve efficient microbial production. In addition, this review also summarizes several strategies for effectively regulating microbial cell metabolism. These strategies can achieve the coupling balance of material and energy by regulating intracellular material metabolism or energy metabolism, and promote the efficient production of target chemicals by microorganisms.  相似文献   

12.
人工合成微生物混菌体系的研究进展   总被引:1,自引:0,他引:1       下载免费PDF全文
杜瑾  贾晓强  元英进 《化工学报》2014,65(2):390-395
合成生物学正在从设计构建基本功能元件和模块,逐步向着从头设计人工细胞及构建人工生物群落的方向发展,人工合成微生物混菌体系已经成为未来合成生物学研究的重要方向。本文综述了人工构建微生物群落生态关系、群落时空动态和分布式计算等基础研究的进展。同时,微生物混菌体系在医药、环境、能源等领域发挥着不可替代的作用,人工合成混菌体系在相关领域也表现出巨大的应用潜力。  相似文献   

13.
Synthetic biology is an advanced form of genetic manipulation that applies the principles of modularity and engineering design to reprogram cells by changing their DNA. Over the last decade, synthetic biology has begun to be applied to bacteria that naturally produce biomaterials, in order to boost material production, change material properties and to add new functionalities to the resulting material. Recent work has used synthetic biology to engineer several Komagataeibacter strains; bacteria that naturally secrete large amounts of the versatile and promising material bacterial cellulose (BC). In this review, we summarize how genetic engineering, metabolic engineering and now synthetic biology have been used in Komagataeibacter strains to alter BC, improve its production and begin to add new functionalities into this easy-to-grow material. As well as describing the milestone advances, we also look forward to what will come next from engineering bacterial cellulose by synthetic biology.  相似文献   

14.
肖文海  王颖  元英进 《化工学报》2016,67(1):119-128
合成生物学即生物学的工程化,因其打破了非生命化学物质和生命物质之间的界线,推动了生命科学由理解生命到创造生命的革新,因此对科学发展和技术创新起到了颠覆性作用,引发了化学品绿色制造的巨大变革。合成生物学作为化学品绿色制造的核心技术,主要从原料到菌种再到过程进行全链条设计和优化。本文首先从原料多样化、产品的合成与底盘细胞的选择这三个方面,综述了化学品绿色制造过程中合成生物学所起到的关键核心作用。在此基础上系统阐述了人工体系的设计与构建,并对今后如何通过发展合成生物学来促进化学品绿色制造,从“原料、底盘细胞、反应过程”这三个方面提出了相应的展望。  相似文献   

15.
Conventional approaches of regulating natural biochemical and biological processes are greatly hampered by the complexity of natural systems. Therefore, current biotechnological research is focused on improving biological systems and processes using advanced technologies such as genetic and metabolic engineering. These technologies, which employ principles of synthetic and systems biology, are greatly motivated by the diversity of living organisms to improve biological processes and allow the manipulation and reprogramming of target bioreactions and cellular systems. This review describes recent developments in cell biology, as well as genetic and metabolic engineering, and their role in enhancing biological processes. In particular, we illustrate recent advancements in genetic and metabolic engineering with respect to the production of bacterial cellulose (BC) using the model systems Gluconacetobacter xylinum and Gluconacetobacter hansenii. Besides, the cell-free enzyme system, representing the latest engineering strategies, has been comprehensively described. The content covered in the current review will lead readers to get an insight into developing novel metabolic pathways and engineering novel strains for enhanced production of BC and other bioproducts formation.  相似文献   

16.
论述了我国新一代煤化工(能源)发展战略的核心圈技术:①洁净煤化工专项技术;②能源煤化工一体化技术;③石油化工产品可替代技术;④洁净煤化工节能减排环保技术。从气化工艺、气化煤种、气化反应床型方面论述了选择适宜的煤气化技术的重要性;分析了各类煤气化技术在中国的市场份额;以ICI工艺和Lurgi工艺为例,介绍了由煤制合成气生产甲醇的工艺路线,以及由甲醇/二甲醚为原料生产丙烯的研发基础和工艺技术特点;分析了企业建设煤化工基地应具备的条件。  相似文献   

17.
Animal-derived protein production is one of the major traditional protein supply methods, which continues to face increasing challenges to satisfy global needs due to population growth, augmented individual protein consumption, and aggravated environmental pollution. Thus, ensuring a sustainable protein source is a considerable challenge. The emergence and development of food synthetic biology has enabled the establishment of cell factories that effectively synthesize proteins, which is an important way to solve the protein supply problem. This review aims to discuss the existing problems of traditional protein supply and to elucidate the feasibility of synthetic biology in the process of protein synthesis. Moreover, using artificial bioengineered milk and artificial bioengineered eggs as examples, the progress of food protein supply transition based on synthetic biology has been systematically summarized. Additionally, the future of food synthetic biology as a potential source of protein has been also discussed. By strengthening and innovating the application of food synthetic biology technologies, including genetic engineering and high-throughput screening methods, the current limitations of artificial foods for protein synthesis and production should be addressed. Therefore, the development and industrial production of new food resources should be explored to ensure safe, high-quality, and sustainable global protein supply.  相似文献   

18.
The development of molecular probes to visualize cellular processes is an important challenge in chemical biology. One possibility to create such cellular indicators is based on the selective labeling of proteins with synthetic probes in living cells. Over the last years, our laboratory has developed different labeling approaches for monitoring protein activity and for localizing synthetic probes inside living cells. In this article, we review two of these labeling approaches, the SNAP-tag and CLIP-tag technologies, and their use for studying cellular processes.  相似文献   

19.
As a new interdisciplinary field, synthetic biology has led to valuable innovations in the fields of medicine, chemistry, agriculture, energy and environment. In this paper, we systematically review the development status of global synthetic biology in the past six years, and make an in-depth benchmarking analysis of the field in China. With the aid of Scopus and SciVal, we analyze the scholarly output of synthetic biology in the world and individual countries, including publication distribution, popular journals and eminent institutions. Furthermore, the research focus and concepts, citation impact and collaborations are also examined using numerical index methods such as the field-weighted citation impact (FWCI) and relative activity index (RAI), showing the differences between data more intuitively. This study aims to offer a comprehensive understanding of the research status of synthetic biology in China and the world, offering a benchmarked overview of the results as a reference to guide the development of this field in the future.  相似文献   

20.
This paper describes the development of synthetic biology as a distinct entity from current industrial biotechnology and the implications for a future based on its concepts. The role of the engineering design cycle, in synthetic biology is established and the difficulties in making and exact analogy between the two emphasised. It is suggested that process engineers can offer experience in the application of synthetic biology to the manufacture of products which should influence the approach of the synthetic biologist. The style of teaching for synthetic biology appears to offer a new approach at undergraduate level and the challenges to the education of process engineers in this technology are raised. Possible routes to the development of synthetic biology teaching are suggested.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号