首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到17条相似文献,搜索用时 166 毫秒
1.
一种发电和天然气再液化相结合的LNG冷能利用系统   总被引:2,自引:1,他引:1       下载免费PDF全文
仇阳  潘振  李萍  杨帆  庞天龙  陈树军 《化工学报》2017,68(9):3580-3591
针对冷能回收再利用问题,提出了一种结合LNG和燃煤废气发电与天然气再液化的冷能利用系统并对系统进行了改进。对原系统和系统改进部分进行了热力学计算,详细分析了蒸发压力、蒸发温度对系统热力性能的影响,分析了天然气液化率对系统净输出功的影响,确定了发电循环的最佳蒸发压力、蒸发温度及天然气液化率的范围。结果表明:以回收1000 kg·h-1的LNG冷量(火用)计算,发电系统最大净输出功为69.6 kW·h,系统冷(火用)回收效率为41.43%;液化系统LNG液化率最大值为24%;系统改进后,发电系统净输出功和冷(火用)回收效率提高了17.85%,液化系统LNG液化率提高至28%。为日后LNG气化供气过程中的冷能利用提供一种新的思路。  相似文献   

2.
柳康  许世森  李广宇  任永强 《化工进展》2018,37(12):4897-4907
CO2减排作为应对全球变暖的重要手段而逐渐成为国内外研究热点。为研究燃烧前CO2捕集系统关键技术,以华能(天津)265MW级整体煤气化联合循环发电系统(IGCC)示范电站为依托,从气化装置抽出合成气约10000m3/h(标况下),进行一氧化碳耐硫变换、甲基二乙醇胺(MDEA)硫碳共脱、PDS硫回收等技术研究,同时完成我国首套工业规模级燃烧前捕集工艺模拟、系统分析及现场测试。研究结果表明:满负荷运行工况下,每年可捕集CO2 7.811万吨,系统单位能耗2.35GJ/t(CO2),CO2捕集率≥ 85%;模拟结果与实际运行数据相吻合。其中MDEA工段能耗占捕集能耗的93.3%,热再生部分则占MDEA工段能耗的81.61%;同时分析了捕集系统各工段CO2损失过程,增加四段变换可使系统能耗基本不变同时捕集率增加至92.29%;考察了CO2压缩液化工段能耗及成本。本研究结果可为燃烧前CO2捕集的设计、工业放大及过程优化提供理论支持。  相似文献   

3.
针对液化天然气(LNG)的冷能利用、天然气燃烧生成烟气的余热回收和烟气中CO2的捕集问题,提出了一种冷热电联供的CO2回热朗肯循环和三级有机朗肯循环联合动力循环(CO2RRC-TORC)。采用Aspen HYSYS软件对系统进行模拟,分析了CO2回热朗肯循环透平入口压力、三级ORC透平入口温度和压缩机出口压力对热力学性能的影响。结果表明:在CO2质量流量为3.2 kg/s,透平等熵效率为75%时,系统净输出功可达2 425.57 kW,热效率为64.76%,冷■回收率为44.78%,■效率为42.57%,年度净资产为3 503 736.70美元。相较于CO2回热朗肯循环和单级有机朗肯循环联合动力循环(CO2RRC-SORC),CO2RRC-TORC系统在热力学和经济性方面均具有更大优势。  相似文献   

4.
动力系统利用液化天然气冷能的节能减排分析   总被引:1,自引:0,他引:1       下载免费PDF全文
熊永强  华贲 《化工学报》2009,60(9):2276-2283
针对动力系统CO2减排能耗过高的问题,将液化天然气(LNG)的冷能集成用于空气分离制氧和CO2近零排放动力循环的CO2捕集,提出了一种利用LNG冷能的CO2近零排放动力系统设计方案。研究结果表明:空分装置利用LNG冷能生产高压氧气、液氮和液氩等产品,生产能耗比传统空分装置降低57.6%,CO2近零排放动力循环的火用效率可从52%提高至55.9%。同时,建立了CO2近零排放动力系统利用LNG冷能的节能减排效益的数学模型,并对动力系统参数进行了分析。以一个进口量为3.0×106 t·a-1的接收站为例,CO2近零排放动力系统利用接收站的LNG冷能每年可节省用电2.78×108 kW·h,减少排放CO2约3.87×105 t·a-1,经济效益可达到2.19亿元·a-1。  相似文献   

5.
针对余热回收和能源利用的问题,以液化天然气(LNG)作为冷源,稠油开采废气作为热源,提出了一种结合天然气液化和废气发电与CO2捕集的余热回收利用系统。分析了关键热力学参数对系统热力学性能的影响。结果表明:对于有机朗肯循环和制冷循环,增加透平膨胀机的进口温度,降低其出口压力以及减少制冷循环压缩机进出口的压缩比,可获得最大净输出功为454.9 kW,余热回收效率为34.2%。对于天然气液化系统,采用C++进行非线性约束优化计算,以氮膨胀制冷循环压缩机总功耗为目标函数进行优化,得到压缩机最优总功耗为101.54 kW。降低天然气压缩机(K110)进口温度,氮气膨胀机(T3)出口压力以及氮气质量流量,可获得最大LNG调峰量为378.8 kg/h,反之,CO2捕集量可提高28.6%。  相似文献   

6.
液化天然气冷能构成及其利用方式探讨   总被引:6,自引:0,他引:6  
谭宏博  厉彦忠 《化学工程》2006,34(12):58-61
液化天然气(LNG)在汽化过程中会释放大量冷能,如果这部分冷能被成功回收利用,其节能效果和对系统效率的提高都十分显著。文中对LNG冷能从冷量和冷量的角度进行分析,把LNG冷能回收方式分为冷量回收与冷量回收,揭示了目前各种LNG冷能回收利用形式的能量利用实质:发电、空分中主要是利用LNG的冷量;冷藏、空调和制干冰利用了LNG的冷量。最后对不同的冷能回收系统提出指导性建议:动力回收系统中,应充分利用其在低温下的高品质能量;冷量回收系统中应减少跑冷。  相似文献   

7.
针对冷能回收再利用问题,提出了一种结合LNG和燃煤废气发电与天然气再液化的冷能利用系统并对系统进行了改进。对原系统和系统改进部分进行了热力学计算,详细分析了蒸发压力、蒸发温度对系统热力性能的影响,分析了天然气液化率对系统净输出功的影响,确定了发电循环的最佳蒸发压力、蒸发温度及天然气液化率的范围。结果表明:以回收1000 kg·h~(-1)的LNG冷量计算,发电系统最大净输出功为69.6 k W·h,系统冷回收效率为41.43%;液化系统LNG液化率最大值为24%;系统改进后,发电系统净输出功和冷回收效率提高了17.85%,液化系统LNG液化率提高至28%。为日后LNG气化供气过程中的冷能利用提供一种新的思路。  相似文献   

8.
利用Aspen Plus化工模拟软件对低温甲醇洗捕集煤化工尾气中的CO2工艺流程进行模拟,在解吸阶段采用多级闪蒸的工艺,得到CO2产品气浓度>99%。针对捕集后的高浓度低温CO2产品气,采用HYSYS软件进行压缩液化的数值模拟,结果表明,常温高压压缩能耗较低,低温低压压缩工艺的能耗高,且主要集中在制冷系统。对常温高压压缩工艺进行优化,由原来的三级压缩加三级冷却调整为两级压缩加两级冷却,压缩工艺得到简化的同时,能耗降低24%。  相似文献   

9.
液化天然气冷能用于Stirling热机初探   总被引:1,自引:1,他引:1       下载免费PDF全文
谭宏博  厉彦忠 《化工学报》2007,58(6):1366-1370
从冷量和冷量(火用)的角度对液化天然气(LNG)冷能进行阐述,把LNG冷能回收方式分为冷量回收与动力回收。在利用LNG与环境大温差方面,提出采用斯特林热机利用LNG冷量(火用),并介绍了其基本工作原理。计算了新方案的热力性能,并与目前LNG冷能动力回收常用方案比较。结果表明:斯特林热机系统回收LNG冷能具有明显优势,开展LNG冷能回收与斯特林热机综合技术研究具有重要价值。  相似文献   

10.
刘洋  韩吉田  游怀亮 《化工学报》2018,69(Z2):341-349
提出了一种新型冷热电联供系统,通过TCO2循环和溴化锂制冷机回收SOFC/GT循环的排烟余热,实现对外供冷、供热和供电。建立了联供系统热力性能的数学模型,对系统进行了能量分析和(火用)分析,并研究了空燃比、SOFC压力、CO2工质流率、CO2工质分流比和TCO2泵出口压力对系统性能的影响。研究结果表明,在额定工况下,系统的净发电效率为70.79%,系统总(火用)效率为68.29%,综合能源利用率为108.5%。增大空燃比、CO2工质分流比或降低SOFC工作压力、CO2工质流率和TCO2泵出口压力可提高联供系统的综合能源利用率;增大SOFC工作压力、TCO2泵出口压力或降低空燃比可提高联供系统的净发电效率和总(火用)效率,随CO2工质流率和CO2工质分流比的增大,净发电效率和总(火用)效率先降低后增大。  相似文献   

11.
何婷  林文胜 《化工学报》2021,72(Z1):453-460
沼气以及CO2驱采油的伴生气中都含有大量的CO2。为降低高含CO2天然气液化的能耗,提出了活化甲基二乙醇胺(MDEA)法脱除CO2的天然气液化系统,将液化厂中驱动压缩机的燃气轮机烟气余热用于吸收剂的再生过程,实现能耗的降低。采用HYSYS软件对系统进行了模拟研究并对脱碳过程的关键参数进行了分析。结果表明,CO2含量不超过10%时,脱碳再生的热耗可全部由烟气余热提供,CO2含量为30%时,烟气余热可提供接近50%的再生热耗;CO2含量为1%~30%时,系统的比功耗为0.577~0.611 kW·h/kg。  相似文献   

12.
CO2空气源热泵能够在寒冷地区低温环境下稳定运行,可望在建筑供暖领域推广应用。为客观、合理地评价CO2空气源热泵供暖的运行性能,搭建了寒冷地区超临界CO2空气源热泵供暖系统。根据室外环境温度和供暖热负荷将供暖期划分为5个不同的阶段,分阶段调整CO2空气源热泵供暖运行参数。测试结果表明,CO2空气源热泵能够满足寒冷地区供暖需求,且供暖系统在供暖季的平均性能系数可达2.236,同时供暖房间具有较好的舒适度。以燃煤锅炉、燃气锅炉为参照,采用等效电方法对比分析了三种热源供暖的能源利用效率及CO2排放量。对比分析结果表明,在考虑能源品位之后,CO2空气源热泵供暖的能源利用效率高于燃气锅炉供暖,略低于燃煤锅炉供暖。受燃料含碳量的影响,CO2空气源热泵供暖的CO2排放量虽然高于燃气锅炉供暖,但比燃煤锅炉供暖减少20.89%。  相似文献   

13.
利用液化天然气冷能捕集CO_2的动力系统的集成   总被引:1,自引:0,他引:1  
熊永强  华贲 《化工学报》2010,61(12):3142-3148
为提高液化天然气(LNG)冷能的利用效率和CO2近零排放动力循环的发电效率、降低CO2减排的能耗,在对CO2近零排放动力循环利用LNG冷能进行火用分析的基础上,提出了一个以天然气为介质的Rankine循环与CO2近零排放动力循环进行集成的动力系统模型,可以在保持CO2预冷和液化所需冷能不变的情况下,将深冷部分的LNG冷火用转换为电能。研究结果表明,集成后动力系统中LNG冷火用的利用效率从34.9%提高到55.7%,整个动力循环的火用效率可达到57.9%。同时,对影响以天然气为介质的Rankine循环发电效率的参数进行了分析。  相似文献   

14.
为实现生物质能量的高效清洁利用,本研究基于两段式富氧气化系统改进燃气品质,并将获得的洁净高热值可燃气用于燃气轮机燃烧。通过Aspen Plus模拟研究分析了氧体积分数、气化温度对气化特性、燃机运行特性的影响,研究结果证实了生物质气化燃气在燃气轮机应用的可行性,并发现氧体积分数提高对改善生物质气化燃气品质及系统发电效率具有重要意义。两段式气化二次气化温度提高会引起气化效率及系统发电效率下降,因此气化温度需控制在合适范围。在满足生物质灰分完全熔融液化分离的前提下,气化温度可取较低值;两段式气化系统可选择氧体积分数为50%~60%时较佳。在氧体积分数60%、气化温度1 200 ℃时,生物质气化-燃气轮机集成发电系统发电效率(ηt)达最优,为34%,此时生物质可燃气低位热值(QLHV)为9.54 MJ/m3,两段式气化效率(ηCGE)为78.65%。  相似文献   

15.
分析了常见的基于空分系统的液化天然气(LNG)冷能利用方式,依据LNG冷能的能谱特点及空分系统运行安全性的特殊要求提出较优的冷能利用方案;针对不同压力等级工况提出LNG与N2的换热网络布置方案,对提出的4种LNG-N2换热网络分别进行了流程模拟,并与传统空分系统和已有的LNG冷能利用空分系统进行了比较,结果表明:新的LNG换热网络能有效降低空分系统的单位液态产品能耗,采用LNG-N2双高压方案时为0.217 kW·h·kg-1,若对LNG出口压力没有限制则采用LNG-N2双低压方案可进一步降低能耗至0.176 kW·h·kg-1,相比已有的LNG冷能利用空分系统能耗分别降低了15.9%和31.8%;同时研究了LNG冷能的多能级换热匹配性能,分析了当N2压力不变时LNG压力变动对各个方案换热均匀性的影响。研究结果可为不同工况下选择合适的LNG换热压力提供参考。  相似文献   

16.
Large amounts of energy are consumed during the manufacturing of cement especially during the calcination process which also emits large amounts of CO2. A large part of the energy used in the making of cement is released as waste heat. A process to capture CO2 by integrating the recovery and utilization of waste heat has been designed. Aspen Plus software was used to calculate the amount of waste heat and the efficiency of energy utilization. The data used in this study was based on a dry process cement plant with a 5-stage preheater and a precalciner with a cement output of 1 Mt/y. According to the calculations: 1) the generating capacity of the waste heat recovery system is 4.9 MW. 2) The overall CO2 removal rate was as high as 78.5%. 3) The efficiency of energy utilization increased after the cement producing process was retrofitted with this integrated design.  相似文献   

17.
曾成  卢苇  蒙仕达  覃日帅 《化工进展》2022,41(10):5214-5220
分离捕集CO2是实现“双碳”目标的重要途径之一。常规的CO2分离方法普遍能耗较高,若能以余(废)热为动力来分离CO2则可综合利用能源、降低能耗。本文针对高碳排放但却拥有丰富余(废)热资源的燃煤电厂,提出了一种基于热流逸效应的烟气CO2分离系统,并建立了相应的分离过程数学模型和系统性能评价指标。分析表明,CO2的浓度和回收率均随热流逸式气体分离器串联级数的增加而升高,但浓度和回收率达到某一阈值后效果不再明显;典型的1000MW燃煤电厂烟气经该系统中串联的24级分离器处理后,CO2的物质的量分数最高可达98.89%,回收率达72.53%。此外,该系统可梯级利用烟气的余热,㶲效率为64.8%,单位能耗为0.047GJ/tCO2, 与传统CO2分离方法相比具有一定节能潜力。利用热流逸效应分离CO2符合当下净零碳排放的政策导向,为CO2的分离捕集提供了新思路。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号