首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
We synthesized a novel cage–ladder-structure, phosphorus-containing polyhedral oligomeric silsesquinoxane (CLEP–DOPO–POSS) via the hydrolytic condensation of 9,10-dihydro-9-oxa-10-phosphaphenanthrene-10-oxide (DOPO)–vinyl trimethoxysilane (VTMS) with 2-(3,4-epoxycyclohexyl) ethyl trimethoxysilane and then incorporated it into epoxy resins (EPs) in different ratios with thermal curing technology. The structure of CLEP–DOPO–POSS was confirmed by Fourier transform infrared spectroscopy, NMR spectroscopy (1H-NMR and 29Si-NMR), matrix-assisted laser desorption ionization time-of-flight, and X-ray diffraction. The thermal stability, mechanical properties and flame retardancy effect of CLEP–DOPO–POSS on EP were comprehensively evaluated via thermogravimetric analysis (TGA), dynamic mechanical analysis, universal tensile testing, limiting oxygen index (LOI) measurement, UL-94 testing, and cone calorimetry. The flame-retardant mechanism of the EP modified with CLEP–DOPO–POSS was investigated by TGA–IR, TGA–mass spectrometry, and scanning electron microscopy. The experimental results show that CLEP–DOPO–POSS was homogeneously dispersed in the EP matrix. The LOI value reached 31.9, and the UL-94 grade passed V-0 with the presence of only 0.28% P (2.91 phr CLEP–DOPO–POSS). In addition, the EP composite containing CLEP–DOPO–POSS exhibited a better thermal stability and mechanical properties. The flame-retardant mechanism was attributed to the quenching effect of the phosphorus-containing free radicals and the formation of phosphorus- and silicon-containing char layers in the condensed phase. © 2019 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2019 , 136, 47607.  相似文献   

2.
The flame retardancy and thermal stability of polyhedral oligomeric silsesquioxane (POSS) nanocomposites are reviewed. Results are summarized and compared on the basis of structure–property relationships. Because of the variability of groups attached on POSS, they exhibit different performance in polymer nanocomposites: metal‐containing POSS show good catalytic charring ability; vinyl‐containing and phenyl‐containing POSS promote the strength of char. Improvements in the cone calorimeter (such as reduced peak heat release rate) are advantages of POSS as preceramics for fire retardancy compared with traditional flame retardants, and it will pave the way to the design of inorganic–organic hybrid polymer nanocomposites with enhanced flame retardancy and thermal stability. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

3.
ABSTRACT

Carbon nanotubes coated with phosphorus-nitrogen flame retardant (PDAP-CNTs) were produced. The compositions and structures of PDAP-CNTs were systematically characterized, and the flame retardancy of PDAP-CNTs/EP composites were also tested. The results indicated that PDAP-CNTs demonstrated excellent flame retardancy performance on the flame-retardant EP composites (FR-EP), incorporation of 5.0wt% PDAP-CNTs improved the LOI values of EP from 26.0% to 31.8% and reached UL-94 V-0 classification. The analysis of flame-retardant mechanism indicating the flame-retardant ability of PDAP-CNTs was ascribed to the synergism of the phosphorus-nitrogen containing coating layer (PDAP) and CNTs.  相似文献   

4.
The flammability and brittleness are two major shortages of epoxy resin (EP). Normally, adding flame retardants can deteriorate the mechanical property of EP. Herein, in this work, a reactive flame retardant (DPPO-TES) containing both Si and P was synthesized and incorporated into EP. When the content of P is only 1.0 wt%, the LOI of the modified EP (DPPO-TES/EP) reaches to 33.2%, UL-94 passes V0, THR and pk-HRR are 377.6 kw/m2 and 103.5 MJ/m2, respectively, which is attributed to the high flame-retardant efficiency in both condense phase and gas phase. In addition, the flexible Si O Si chains in the structure can significantly improve the impact strength of DPPO-TES/EP. Therefore, as a bifunctional modifier, DPPO-TES has a wide application prospect for EP materials.  相似文献   

5.
To reduce the flammability of epoxy resin (EP), a flame retardant (designated as D-POSS) containing diphenylphosphinyl and polyhedral oligomeric silsesquioxane (POSS) was constructed by aminopropyl-isobutyl POSS and diphenylphosphinyl chloride. The chemical structure of D-POSS was fully characterized, then it was used to enhance the flame retardancy of EP. When the flame-retardant EP composite contained 4 wt% D-POSS, its limiting oxygen index value was 29.0% and it achieved UL 94 V-1 rating. Also, its peak of heat release rate (pk-HRR), total heat release (THR) and total smoke production were decreased by 35.3%, 30.3%, and 38.3%, respectively. Moreover, the results from cone calorimeter disclosed that diphenylphosphinyl group and POSS group in D-POSS showed a strong synergistic effect in inhibiting pk-HRR, THR, and smoke production, promoting the charring formation of EP material, and forming an intumescent char layer. Additionally, the theoretical THR reduction of flame-retardant EP composite was calculated by the equation deduced from the standard, and it was almost same with the practical THR reduction. Notably, some silicon oxide enriched on the residue's surface. The phenomenon led to form a double-layer residue that consisted of white yarn-like outer char and normal intumescent inner char. This double-layer residue was contributed to enhance EP composite's flame retardancy.  相似文献   

6.
Two types of silsesquioxanes were synthesized by hydrolytic condensation reaction, and then were incorporated into polycarbonate (PC) matrix by melt blending to prepare PC/POSS hybrid composites. The study of morphology of the composites showed that octaphenylsilsesquioxane (PH‐POSS) exhibited partial compatibility with PC matrix, while 3‐glycidyloxypropylsilsesquioxane (EP‐POSS) could react with phenolic hydroxyl groups of matrix. Thermal and mechanical properties were studied by DSC, TGA, and DMA. The result showed that the incorporation of POSS not only improved thermal stabilities of PC composites, but also retarded their thermal degradation. Si O fractions left during POSS degradations were the key factor governing the formation of a gel network layer on the exterior surface. This layer possessed more compact structures, higher thermal stabilities, and some thermal insulation. In addition, percentage residues at 700°C (C700) significantly increased from 10.8 to 15.5–22.8% in air. The storage modulus of two series of composites was slightly improved up to 90°C; furthermore, the temperature range of the rubbery state of them shifted to high temperature. POLYM. COMPOS., 2011. © 2011 Society of Plastics Engineers  相似文献   

7.
In recent years, the poor weather resistance and aging resistance of additive flame retardants have caused researchers to pay attention to reactive flame retardants. A novel P-N coacting epoxy curing agent with intrinsic flame retardancy was designed and synthesized. The mechanical properties, crosslinking curing properties and flame-retardant properties of intrinsic flame-retardant epoxy resin were characterized. The results show that the cross-linking curing performance of hexa (3,5-diamino-1,2,4 triazolyl)-cyclotriphosphonitrile) (VCP) is lower than that of DDM. This is due to the decrease in cross-linking density caused by the VCP ring molecular structure. Therefore, the mechanical properties of the epoxy resin cured with VCP decreased, but the flame-retardant properties of the material significantly improved. The limiting oxygen index of the VCP/EP flame retardant epoxy thermosets was 27.3%, reaching the UL 94 V-1 level. The peak heat release rate and total heat release rate of the VCP/EP flame retardant epoxy thermosets were significantly reduced. The flame retardancy mechanism was studied by Fourier transform infrared spectroscopy, scanning electron microscopy, energy dispersive spectroscopy, and x-ray photoelectron spectroscopy. The results show that the intrinsic flame-retardant P-N coacting epoxy resin has excellent curing and flame-retardant properties.  相似文献   

8.
丁丁  徐文总  闫弘毅 《中国塑料》2022,36(12):31-37
为了提高环氧树脂(EP)的阻燃抑烟性能,采用共沉淀法将类沸石咪唑酯骨架材料ZIF⁃67负载到壳聚糖(CS)表面,通过傅里叶红外光谱(FTIR)、X射线衍射(XRD)和扫描电子显微镜 (SEM)对其结构和形貌进行分析,结果表明杂化物CS⁃ZIF⁃67成功制备。将不同比例的CS⁃ZIF⁃67添加到EP中,研究其对EP阻燃抑烟性能的影响。结果表明,与纯的EP相比,CS⁃ZIF⁃67的加入可以提高EP复合材料的垂直燃烧UL 94等级和极限氧指数(LOI)、降低EP复合材料的热释放速率(HRR)和烟释放速率(SPR),提高复合材料燃烧后的残炭量,CS⁃ZIF⁃67的加入可以有效提高EP的阻燃抑烟性能。对EP复合材料燃烧后的残炭进行SEM和Laman光谱分析。结果表明,CS⁃ZIF⁃67的加入,使得残炭的石墨化程度提高,EP燃烧时能形成更加致密的炭层,从而起到阻燃抑烟的作用。  相似文献   

9.
Polyhedral oligomeric silsesquioxane (POSS)-based coatings have attracted significant attention from academia and industry over the past decades. The three-dimensional nano-sized cage with alternating Si O bonds forms the inorganic core of POSS molecules, while organic functional groups are covalently attached to the Si vertices. With this unique structure, they can be integrated with polymers via different approaches, including physical blending, covalent grafting, and chemical cross-linking. And the inorganic/organic hybrid nature of POSS offers the coating materials with desirable mechanical, anti-wetting, anti-corrosive, icephobic, and fire-retardant properties. This review focuses on the state-of-the-art developments of POSS-based functional coatings, while their challenges and future research directions are also discussed.  相似文献   

10.
To further enhance the fire safety of epoxy resins, a phosphorus–nitrogen synergistic flame retardant (DPVHD) with a flexible chain segment and a nitrile group was synthesized. In addition to the traditional flame retardant elements P and N, the flame retardancy of the epoxy composites is further enhanced by the cross-linking effect of the nitrile groups introduced to form an interpenetrating network with the epoxy matrix. The results showed that the sample with 10 wt% DPVHD-10/EP had a LOI of 32.3% and passed the UL-94 V-0 rating, with PHRR and THR reduced by 15.4% and 47%, respectively, compared to pure EP. It is worth noting that the introduction of flexible chain segments improves the flexural properties of the epoxy resin matrix. Compared with pure epoxy, the flexural properties of epoxy-cured compounds with DPVHD addition show a rising trend with the increase of flame-retardant additive. And the rise of DPVHD-10/EP reaches 33.6%, which greatly reduces the negative effect of flame-retardant additives on the mechanical properties of the epoxy resin matrix. This work therefore provides new ideas for exploiting the advantages of phosphorus-nitrogen synergy and nitrile-based cross-linking for flame retardancy in epoxy resins.  相似文献   

11.
The combination of gas‐phase and condensed‐phase action will contribute to high quality flame retardant. A novel 9,10‐dihydro‐9‐oxa‐10‐phosphaphenanthrene‐10‐oxide (DOPO)‐based flame retardant (DOPO‐DOPC), which contains carbon source was synthesized in favor of conducting the effect of gas‐phase as well as promoting the char formation in condensed‐phase. The chemical structure of DOPO‐DOPC was characterized by nuclear magnetic resonance (NMR) and Fourier transform infrared spectroscopy (FTIR). DOPO–DOPC was used as an additive in poly(ethylene terephthalate) (PET) and epoxy resin (EP). The flame retardancy of PET/DOPO‐DOPC and EP/DOPO‐DOPC composites were studied by limiting oxygen index (LOI) and UL‐94 test. The results showed that the incorporation of DOPO–DOPC into PET or EP could obviously improve their flame retardancy. The LOI values of modified PET or EP, which contained 10 wt % DOPO‐DOPC reached 42.8 and 31.7%, respectively. The thermogravimetric analysis (TGA) results revealed that DOPO–DOPC enhanced the formation of char residues. The Laser Raman spectroscopy (LRS) was used to investigate the carbon structure of thermal oxidation residues. Because of the combination of the gas phase flame retardant effect of DOPO moiety and the promoting formation of char residues in condensed phase, the PET and EP composites exhibited significant improvement toward flame retardancy. © 2016 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2017 , 134, 44639.  相似文献   

12.
13.
Three kinds of inherent flame-retardant epoxy resin (EP) composites with 20 wt % benzoxazine (BOZ) were prepared with different curing processes with 2-methyl-1H-imidazole (MI) as a catalyst or/and changes in the curing temperature. The effects of the curing process on the flame retardancy, thermal stability, mechanical properties, and curing behaviors were investigated. The composite with added MI cured at low temperature (EBM–LT) had the best properties. It possessed a 35.3% limiting oxygen index and achieved a UL 94 V-0 rating. Thermogravimetric analysis indicated that EBM–LT had the best thermal stability among the three kinds of EP composites with BOZ. The EP composites with BOZ mainly displayed a condensed-phase flame-retardant mechanism. The mechanical properties improvement was attributed to the formation of a heterogeneous network. Differential scanning calorimetry indicated that MI reacted with EP and catalyzed the homopolymerization of BOZ, and EP reacted with BOZ. Fourier transform infrared spectroscopy analysis indicated that curing at lower temperature caused the formation of more homopolymers of BOZ. The relationship of the curing process, network structure, and properties of EP composites with BOZ was established; this could help with the design of high-performance EP composites with BOZ. © 2019 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2019 , 136, 47847.  相似文献   

14.
Chitosan-based flame-retardant CS–Co–DOPA (CCD) was synthesized by the neutralization reaction of 10-hydroxy-9,10-dihydro-9-oxo-10-phosphaphenanthrene-10-oxide (DOPA) with chitosan-cobalt complex and fully characterized by scanning electron microscopy (SEM), energy-dispersive spectrometer, x-ray diffraction, X-ray photoelectron spectroscopy (XPS), optical emission spectrometer, and Fourier transform infrared (FTIR) characterizations. The epoxy resin (EP) modified with CCD exhibited good flame retardancy. With the addition of 5 wt% CCD, the EP/CCD achieved UL-94 V-1 rating and possessed limiting oxygen index (LOI) value of 30%. Cone calorimetry (CC) test demonstrated that EP/CCD resulted in a remarkable reduction of peak smoke production rate (pSPR) and total smoke production (TSP) by 63% and 40%, respectively, showing an outstanding smoke suppression. The char residue obtained from the CC test was further characterized using SEM, FTIR, Raman, and XPS techniques. The results revealed that CCD facilitated the formation of a dense and compact char layer on EP during combustion, thereby impeding gas and heat transfer. In addition, TG-IR was employed to investigate the gas-phase flame-retardant effect of EP/CCD composites, which revealed that CCD promotes the release of water, CO2, and other incombustible gases, altering the decomposition path of EP.  相似文献   

15.
聚合物/层状硅酸盐(PLS)纳米复合材料是国内外阻燃材料领域中近年来研究的热点。它满足了新型阻燃材料发展的要求,在提高阻燃性能的同时能够很少降低或者不降低材料原有的其他性能,有时甚至可以提高部分聚合物基体的机械性能、气体阻隔性能、环保性能等。本文综述了聚合物/层状硅酸盐纳米复合材料的研究近况;简要介绍了该纳米复合材料的特点及阻燃性能的测试;讨论了其燃烧性能和阻燃机理;重点研究了以聚酰胺(PA)等聚合物为基质、以层状硅酸盐为无机阻燃添加剂的纳米复合材料的阻燃性能。通过与常规阻燃剂进行比较,发现聚合物/层状硅酸盐纳米复合材料在阻燃性能、机械性能、加工性能和环保等方面均优于常规阻燃剂;最后本文还指出了该材料在阻燃研究中目前尚存在的问题,并对其开发应用前景进行了展望。  相似文献   

16.
In order to obtain cured epoxy resin (EP) with satisfactory thermal stability and flame retardancy, a multi-element P/N/Si-containing flame retardant (DPAK) was synthesized by a facile way and was used as a reactive flame retardant to prepare flame-retardant EP. The flame-retardant efficiency of DPAK was subsequently evaluated by limiting oxygen index (LOI), UL-94, and cone calorimeter (CC) test. With a low incorporation amount of DPAK (4 wt%), the resultant EP achieve to UL-94 V-0 rating, and the corresponding LOI value reached to 30%, which was higher than that of EP containing DOPO (2.9 wt%). More importantly, the thermogravimetric analysis (TGA) revealed their higher thermal stability than those of EP containing DOPO. Furthermore, dynamic mechanical analysis (DMA) shown the maintained glass transition temperature of DPAK-EP. The increase of CO/CO2 ratio in the CC test for the DPAK-EP samples proved the gas-phase activity of DPAK. Additionally, DPAK showed evidence of condensed phase activity by increasing char residue in TGA and CC test. The scanning electronic microscope together with the energy dispersive X-ray spectrometer (SEM–EDX) and X-ray photoelectron spectroscopy (XPS) exhibited that DPAK promoted the formation of compacted phosphorus-silicon char layer. Subsequently, TG-FTIR results indicated that DPAK-EP produced lesser combustible gases than neat sample did, improving flame-retardant properties of epoxy resin.  相似文献   

17.
A facile strategy was developed to fabricate flexible polyurethane (PU) foam composites with exceptional flame retardancy. The approach involves the incorporation of graphene oxide (GO) into a silicone resin (SiR) solution, which is then deposited onto a PU foam surface via the dip-coating technique and cured. Fourier-transform infrared spectroscopy, scanning electron microscopy, and Raman spectroscopy measurements demonstrated that the SiR and GO were successfully coated onto the PU skeleton and the intrinsic porous structure of the PU foam remained intact. The effects of SiR and GO on the mechanical and thermal stability and flame retardancy of PU composites were evaluated through compression tests, thermogravimetric analysis, vertical combustion tests, and the limiting oxygen index. The measurement results revealed that the composites (PU@SiR-GO) showed superior flame retardancy and thermal and mechanical stability compared to pristine PU or PU coated with SiR alone. The mechanical and thermal stability and the flame-retardant properties of the PU composites were enhanced significantly with increasing GO content. Based on the composition, microstructure, and surface morphology of PU@SiR-GO composites before and after combustion tests, a possible flame-retardance mechanism is proposed. This work provides a simple and effective strategy for fabricating flame-retardant composites with improved mechanical performance.  相似文献   

18.
In this work, to improve its dispersion and flame retardancy, graphene oxide (GO) was functionalized by silane coupling agent KH550 and 1-butyl-3-methylimidazole hexafluorophosphate (PF6-ILs), and characteristics of the PF6-ILs@GO was obtained by transmission electron microscopy (TEM), energy dispersive spectroscopy (EDS), Fourier transform infrared spectroscopy (FTIR), X-ray diffraction (XRD), and thermogravimetric analysis (TGA). Then, the synergistic flame retardant of GO or PF6-ILs@GO and melamine pyrophosphate (MPP) were applied for epoxy resin (EP) materials. Specifically, the limiting oxygen index (LOI) value of EP with 0.1 wt% PF6-ILs@GO was increased to 29.2% from 27.5% of EP/MPP composites, and the UL-94 test reached the V-0 rating. The CCT results showed that the total heat release (THR) and total smoke release (TSP) of EP/MPP/PF6-ILs@GO composites were significantly 24.4% and 53.4% lower than that of EP/MPP composites. Besides, the thermal behavior investigated by TGA indicated that the char-forming effect of GO and PF6-ILs@GO was great, the residual char of EP/MPP/PF6-ILs@GO composites was as high as 19.5% at 700°C, and its thermal stability was higher than that of EP/MPP composites. On the other hand, the tensile strength of EP/MPP/GO and EP/MPP/PF6-ILs@GO composites were increased by 15.6% and 28.3% compared with EP/MPP composites. According to SEM analysis, the EP/MPP/GO composites formed a good protective char layer, which can effectively improve flame retardancy of EP. This research represents a new method of flame retardant modified GO to improve the flame retardancy and mechanical properties of polymers.  相似文献   

19.
Humic acid (HA), a biomass material with plentiful oxygen-containing functional groups, showed huge potential to be considered as a promising charring agent in flame retardancy. In this study, this HA was modified with four different metal ions like Fe2+, Mn2+, Al3+, and Cu2+ and finally, introduced into the epoxy resin (EP) to enhance the flame retardancy of the EP and the dispersion of these flame retardants into the EP matrix. When 10 wt% of HA-Fe and HA-Mn were incorporated into EP matrix, the limiting oxygen index (LOI) was increased from 21.2% for EP to 26.6 and 25.3% for the EP composites and the peak heat release rate (pHRR) was reduced by 36 and 35.5%, respectively. Such a significant improvement in flame retardancy was attributed to the catalytic charring of HA in the presence of metal ions, which ultimately increased the residual char formation and produced compact char layers during the combustion process to retard the transfer of heat and combustible gases between the EP composites and the flame zone. Finally, this kind of application provided a feasible way for the development of an environmentally friendly flame retardant with high efficiency, which improved the fire safety of EP matrix.  相似文献   

20.
Xin Wang  Yuan Hu  Lei Song  Hongdian Lu  Ganxin Jie 《Polymer》2010,51(11):2435-778
A series of flame-retardant epoxy resins (EP) with different content of poly(DOPO substituted dihydroxyl phenyl pentaerythritol diphosphonate) (PFR) were prepared. The PFR was synthesized via the polycondensation between 10-(2,5-dihydroxyl phenyl)-9,10-dihydro-9-oxa-10-phosphaphenanthrene-10-oxide (DOPO-BQ) and pentaerythritol diphosphonate dichloride (SPDPC). The structure of PFR was confirmed by Fourier transform infrared spectroscopy (FTIR) and 1H nuclear magnetic resonance (1H NMR). The flame retardancy and the thermal stability of the EP/PFR hybrids were investigated by limiting oxygen index (LOI) test and thermogravimetric analysis (TGA) in air. The results showed that the incorporation of PFR into EP can improve the thermal stability dramatically. The mechanical results demonstrated that PFR enhanced failure strain slightly accompanied by a decrease in tensile strength. The thermal oxidative degradation mechanisms of the EP/PFR hybrids were investigated by real time Fourier transform infrared spectra (RTFTIR) and direct pyrolysis/mass (DP-MS) analysis. X-ray photoelectron spectroscopy (XPS) was used to explore chemical components of the residual char of EP and EP/PFR hybrid. DP-MS analysis showed that the degradation process of EP/PFR hybrid was divided into two characteristic temperature regions, attributed to the decomposition of phosphate and aromatic structure.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号