首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Mechanical properties of the ternary blends of poly(ethylene terephthalate) (PET), polycarbonate (PC), and thermotropic liquid crystalline (TCLP, Vectra A950) were investigated. The ternary blends were prepared by varying the amount TLCP but fixing the ration of PET and PC. The fiber fallen freely through the capillary die had the highest initial modulus (1.46 GPa)/tensile strength (73 MPa) when 10% of TLCP was added. Above this TLCP content, however initial modulus and tensile strength decreased. The scanning electron microscope (SEM) micrographs of the TLCP phase which was extracted by dissolving PET/PC matrix from the blend showed the fine fibrils formed at 5 and 10% of TLCP, while the aggregated TLCP phases at 20 and 30% of TLCP. It was suggested that the decrease of the mechanical properties of the resulting blend was caused by the aggregation of TLCP phase above 10% of TLCP. A high draw ratio gave a rise to the formation of highly oriented fibrils of TLCP phase in the PET/PC matrix and the improvement of mechanical properties of the ternary blend.  相似文献   

2.
Blends of poly(ethylene terephthalate-Co-p-oxybenzoate), PET/PHB, with poly(ethylene terephthalate), PET, have been studied in the form of as-spun and drawn fibers. DSC melting and crystallization results show that the PET is compatible with LCP and the crystallization of PET decreases by the addition of LCP in the matrix. Upon heating above the crystal melting temperature of PET, the blend shows good dispersion of LCP in the PET matrix. Wide angle X-ray diffraction of drawn blended fibers show the possible formation of LCP oriented domains. The mechanical properties of drawn fiber up to 10 wt% LCP composition exhibit significant improvement in tensile modulus and tensile strength with values of 17.7 GPa and 1.0 GPa, respectively. Values of modulus are compared with prediction from composite theory, assuming the blend system as nematic domains of LCP. dispersed in PET matrix.  相似文献   

3.
《Ceramics International》2023,49(4):5700-5706
In the paper, the aluminosilicate fiber-reinforced zirconia (ASf/ZrO2) ceramic composites were successfully fabricated by polymer impregnation and pyrolysis (PIP) method. The microstructure and high-temperature mechanical properties of the original composites were well studied. The results revealed that the composites could maintain the stability of microstructure at 1000 °C. The flexural strength increased from 58.82 ± 2.83 MPa to 88.74 ± 6.20 MPa and the flexural modulus increased from 29.26 ± 4.67 GPa to 40.76 ± 8.76 GPa. The thermal exposure improved the interfacial bonding and made the load transfer more effective. After heat treatment from 1200 °C to 1400 °C, the flexural strength gradually declined due to the crystallization of the AS fibers and ZrO2 matrix, while the flexural modulus increased in a completely different trend. After heat treatment at 1400 °C, the composites could maintain a flexural strength of 66.95 ± 4.24 MPa with a flexural modulus of 60.42 ± 7.25 GPa. But the fracture mode gradually evolved to brittleness.  相似文献   

4.
The polymer composites of magnetic nanoparticles can be possibly used in a bulk form by preserving all the novel characteristics of magnetic nanoparticles such as superparamagnetic behavior. By introducing magnetic properties of Fe3O4 nanoparticles into polymer fibers, novel magnetic properties combine with the advantages of composite fibers such as light-weight and ease-of-use. Using dry-jet-wet fiber spinning technology, we have successfully fabricated iron oxide/polyacrylonitrile (Fe3O4/PAN) composite fibers with 10 wt% nanoparticle in the polymer matrix. Composite fiber with a diameter as small as 15 μm can achieve tensile strength and tensile modulus values as high as 630 MPa and 16 GPa, respectively. Superparamagnetic properties of Fe3O4 nanoparticles were preserved in the composite fibers with saturation magnetization at 80 emu/g and coercivity of 165 G.  相似文献   

5.
In this paper, the effect of phase transformation on microstructure evolution and mechanical behaviors of mullite fibers was well investigated from 1100 to 1300°C. In such a narrow temperature range, the microstructure and mechanical properties showed great changes, which were significant to be studied. The temperature of the alumina phase transformation started at below 1100°C. The main phases in fibers were γ-Al2O3 and δ-Al2O3 with amorphous SiO2 at 1150°C. The stable α-Al2O3 formed at 1200°C. Then the mullite phase reaction occurred. As the alumina phase reaction took place, the tensile strength increased with the increasing temperature. In particular, the filaments achieved the highest strength at 1150°C with 1.98 ± 0.17 GPa, and the Young's modulus was 163.08 ± 4.69 GPa, showing excellent mechanical performance. After 1200°C, the mullite phase reaction went on with the crystallization of orthorhombic mullite. The density of surface defects increased rapidly due to thermal grooving, which led to mechanical properties degrade sharply. The strength at 1200°C was 1.01 ± 0.15 GPa with a strength retention of 63.13%, and the Young's modulus was 184.14 ± 10.36 GPa. While at 1300°C, the tensile strength was 0.64 ± 0.14 GPa with a strength retention of only 40.00%.  相似文献   

6.
Boron nitride (BN) fibers were fabricated on a large scale through the melt‐drawn technique from low‐cost boric acid, NH3, and N2. Evolution of structure and properties of BN fibers during the fabrication process was studied by Fourier transform infrared (FT‐IR), X‐ray diffraction (XRD), scanning electron microscope (SEM), and X‐ray photoelectron spectroscopy (XPS). The mechanical properties of BN fibers were tested and analyzed. The results shown that both the mechanical properties and the crystallinity of BN fibers slightly increased with the temperature from 450 to 850°C, due to the combination of the fused‐B3N3. For BN fibers heat‐treated at 850 or 1000°C, the tensile strength (σR) and elastic modulus (E) were strongly increased because of the increase in crystallization of the BN phase. The meso‐hexagonal BN fibers with a diameter of 5.0 μm were fabricated at 1750°C, of which the tensile strength (σR) and elastic modulus (E) are 1200 MPa and 85 GPa, respectively. BN fibers with excellent mechanical properties and proper diameters were obtained by nitriding of green fibers during their conversion into ceramic.  相似文献   

7.
Bi-component fibers typically combine multiple functions that arise from at least two distinct components. As a result, these fibers can incorporate carbon nanotubes, which impart specific and controllable mechanical, electrical, and thermal transport properties to the fibers. Using gel spinning, sheath-core polyacrylonitrile–polyacrylonitrile/carbon nanotube bi-component fibers with a diameter of less than 20 μm and carbon nanotube concentrations of up to 10 wt% were produced. In these fibers, the carbon nanotubes were well dispersed and aligned along the fiber axis. The fibers exhibited a tensile strength as high as 700 MPa, and a tensile modulus as high as 20 GPa, as well as enhanced electrical and thermal conductivities when compared to the fibers without carbon nanotubes.  相似文献   

8.
A borosilicate sol–gel solution is synthesized using a mixture of methyltriethoxysilane, dimethyldiethoxysilane, and boric acid. SiBOC gel fibers are produced from the as‐synthesized sol–gel solution using a spinning apparatus. Subsequently, SiBOC glass fibers are prepared through pyrolysis under argon atmosphere at 1000°C and 1200°C. Mechanical properties of the SiBOC glass fibers are studied by measuring the tensile strength and the elastic modulus. The results show a high tensile strength ?1300 and 1058 MPa, and a high Young modulus ?79 and 95.5 GPa, for the fibers prepared at 1000°C and 1200°C, respectively. Furthermore, alkali resistance of the SiBOC fibers is investigated by measuring the tensile strength after soaking them for 20 h in NaOH and Ca(OH)2 solutions at 100°C. For comparison, the same measurements are performed on commercial AR and E glass fibers. The SiBOC fibers show excellent alkaline resistance and perform better than commercial AR fibers. Indeed, SiBOC fibers retain 80%–90% of the initial strength after Ca(OH)2 attack.  相似文献   

9.
《Ceramics International》2023,49(18):29800-29807
Carbon nanomaterials have wide applications in sensors, batteries, electromagnetic shielding, and mechanical reinforcement. Here, carbon nanofiber (CNF)-reinforced Ge25Sb10S65 chalcogenide glassy composites with excellent mechanical and electrical properties were obtained. These glassy composites maintained the amorphous properties of glass. Thermodynamic parameters, microscopic morphology, and structural characteristics were further studied. Benefiting from the remarkable high strength and conductivity of CNFs, as well as the great interface connection between CNFs and glass, the electrical and mechanical properties of glassy composites were greatly enhanced. The Vickers hardness improved by 36% (from 200 kg/mm2 to 272 kg/mm2), the tensile modulus increased from 45.9 GPa to 57 GPa, and the shear modulus increased from 22.2 GPa to 23.7 GPa when the CNF concentration increased from 0 wt% to 3.0 wt%. Furthermore, DC conductivity was raised by several orders of magnitude compared with bulk glass at 293 K (from 4.55 × 10−10 S/cm to 3.15 × 10−4 S/cm) owing to the formation of a continuous conductive network. Thus, these CNF-reinforced glassy composites provide a new way for realizing multifunctional composites.  相似文献   

10.
Jute fabrics/gelatin biocomposites were fabricated using compression molding. The fiber content in the composite varied from 20–60 wt%. Composites were subjected to mechanical, thermal, water uptake and scanning electron microscopic (SEM) analysis. Composite contained 50 wt% jute showed the best mechanical properties. Tensile strength, tensile modulus, bending strength, bending modulus and impact strength of the 50% jute content composites were found to be 85 MPa, 1.25 GPa, 140 MPa and 9 GPa and 9.5 kJ/m2, respectively. Water uptake properties at room temperature were evaluated and found that the composites had lower water uptake compared to virgin matrix.  相似文献   

11.
High strength polyimide fibers with functionalized graphene   总被引:1,自引:0,他引:1  
Graphene possesses unprecedented physical and chemical properties and has been thought to be ideal filler for reinforcing fibers' mechanical properties. However, graphene is difficultly dispersed in polymer which severely restrict to prepare high-strength and high-modulus composites. In this work, we report an effective method to fabricate a kind of organ-soluble polyimide (PI)/graphene composite fiber using in situ polymerization. Graphene oxide (GO) is modified by 4,4′-diaminodiphenyl ether (ODA) to obtain the GO-ODA nanosheets which exhibit excellent dispersibility and compatibility with the organ-soluble PI matrix. WAXD results show that these 2D nanosheets have a significant influence on the crystallization, aggregation or assembly behaviors of the polymer chains. The PI/graphene composite fiber containing 0.8 wt% of GO-ODA presents a tensile strength of 2.5 GPa (1.6 times higher than the pure PI fiber), and tensile modulus of 126 GPa (223% raises compared with pure PI fiber). Furthermore, the incorporation of graphene significantly improves the glass transition temperature and thermal stability of the composite fibers. Thanks to the excellent hydrophobic properties of graphene, the hydrophobic behavior of the composite fibers is greatly improved. This effective approach shows a potential application in fabricating multifunctional polymer-based composite fibers.  相似文献   

12.
《Ceramics International》2023,49(2):2073-2080
Based on good thermomechanical and electromagnetic properties of silicon nitride (Si3N4), barium aluminosilicate (BaO–BaTiO3–SiO2 or BAS), and boron nitride (BN), a novel combination of Si3N4/BAS/BN composites was fabricated by spark plasma sintering (SPS) after traditional powder mixing process. The effect of different amounts of BN (3–9 wt%) on the mechanical properties of composite was studied. The phases were observed by X-ray diffraction, and the microstructures were identified by scanning electron microscopy (SEM). The optimal sample is the one containing 3 wt% of BN and is sintered under a final pressure of 50 MPa. This sample has a hardness of 9.03 GPa, a flexural strength of 418.75 MPa, an elastic modulus of 934.46 MPa, and a loss tangent of less than 0.002 in 38% of the X-band frequencies. The optimal sample thickness was determined via the Nicolson-Ross-Weir (NRW) technique considering the mechanical strength limits.  相似文献   

13.
Carbon fibers were produced from linear low density polyethylene (LLDPE) instead of commonly used precursors, such as viscose rayon, mesophase pitch and polyacrylonitrile (PAN). Cross-linked fibers were produced at various temperatures, times and stress conditions during a sulfuric acid treatment using LLDPE fibers obtained from dry-wet spinning. The effects of cross-linking were analyzed using a range of characterization techniques, such as differential scanning calorimetry, color change, fourier transform infrared spectroscopy, elemental analysis, density, scanning electron microscopy, and single filament mechanical properties. The carbonization process of cross-linked fibers was carried out at 950 °C for 5 min in a nitrogen atmosphere. The carbon fibers with the best mechanical properties were obtained from the cross-linked fiber with the highest tensile modulus. In particular, the carbon fibers with the best mechanical properties (tensile strength and tensile modulus of 1.65 GPa and 110 GPa, respectively), similar to commercial-grade carbon fiber, were obtained from the cross-linked fiber that had undergone a carbonization process with a stress of 0.25 MPa after an acid treatment for 150 min at 140 °C and a stress of 0.26 MPa.  相似文献   

14.
This investigation focused on the potential of improving the performance of poly(ethylene terephthalate) (PET) and polycarbonate (PC) fibers by incorporating a novel thermotropic liquid crystalline copolymer (TLCP). The degree of mechanical enhancement obtained in the fibers incorporating 20 wt % TLCP depended upon the chosen matrix material and the processing conditions. The PET matrix systems did not exhibit any modulus improvements until after posttreatment of the fibers. Following posttreatment, the blends exhibited a modulus of 24 GPa, an increase of 40% compared to the PET control fiber. The PC systems exhibited a 1 GPa modulus increase in the as-spun fiber blends, but improvement was negligible after fiber posttreatment. The morphologies of the as-spun and posttreated fibers suggest that different mechanisms of reinforcement are occurring depending upon the matrix material selected. © 1994 John Wiley & Sons, Inc.  相似文献   

15.
《Ceramics International》2021,47(19):26800-26807
Current study deals with the effect of carbon nanotube (CNTs) and graphene nanoplatelets (GNPs) reinforcement on the mechanical properties and the adhesion strength of plasma sprayed alumina (Al2O3) single splats, using in-situ picoindentation and nanoscratch test, respectively. The hardness of the Al2O3 splat was measured as 18 ± 5.3 GPa which increased to 34.22 ± 8.44 GPa on 1 wt% CNTs addition and to 42.5 ± 9.06 GPa on 0.5 wt% GNPs addition. Hybrid addition of CNTs and GNPs provided the maximum hardness value of 51.25 ± 8.76 GPa to the Al2O3 splat. Similar trend in the elastic modulus has been reported with a minimum value for Al2O3 splat, i.e. 159 ± 35.40 GPa, and maximum for the Al2O3 splat mixed synergistically with CNTs and GNPs (269 ± 43.12 GPa). Adhesion strength of the Al2O3 splat (0.21 ± 0.11 MPa) also showed a nearly 5-fold increase on hybrid addition of CNTs and GNPs with a maximum value of 1.08 ± 0.38 MPa. This improvement in the properties were due to the extremely high mechanical properties of CNTs and GNPs and better melting of the splats, which not only improved the densification but also provided a better interlocking between the splat and the substrate.  相似文献   

16.
Zirconium carbide (ZrC) powder, batched to a ratio of 0.98 C/Zr, was prepared by carbothermal reduction of ZrO2 with carbon black. Nominally phase-pure ZrC powder had a mean particle size of 2.4 μm. The synthesized powder was hot-pressed at 2150°C to a relative density of > 95%. The mean grain size was 2.7 ± 1.4 μm with a maximum observed grain size of 17.5 μm. The final hot-pressed billets had a C/Zr ratio of 0.92, and oxygen content of 0.5 wt%, as determined by gas fusion analysis. The mechanical properties of ZrC0.92O0.03 were measured at room temperature. Vickers’ hardness decreased from 19.5 GPa at a load of 0.5 kgf to 17.0 GPa at a load of 1 kgf. Flexural strength was 362.3 ± 46 MPa, Young's modulus was 397 ± 13 MPa, and fracture toughness was 2.9 ± 0.1 MPa•m1/2. Analysis of mechanical behavior revealed that the largest ZrC grains were the strength-limiting flaw in these ceramics.  相似文献   

17.
There is a growing interest in the use of composite materials. Silk fiber/gelatin biocomposites were fabricated using compression molding. The fiber content in the composite varied from 10–30 wt%. Composite containing 30 wt% silk showed the best mechanical properties. Tensile strength, tensile modulus, bending strength, bending modulus and impact strength, hardness of the 30% silk content composites were found 54 MPa, 0.95 GPa, 75 MPa and 0.43 GPa and 5.4 kJ/m2, 95.5 Shore A, respectively. Water uptake properties at room temperature, accelerated weathering aging, irradiation, thermomechanical analysis, and degradation in soil were carried out in this experiment.  相似文献   

18.
Interphase between the fibers and matrix plays a key role on the properties of fiber reinforced composites. In this work, the effect of interphase on mechanical properties and microstructures of 3D Cf/SiBCN composites at elevated temperatures was investigated. When PyC interphase is used, flexural strength and elastic modulus of the Cf/SiBCN composites decrease seriously at 1600°C (92 ± 15 MPa, 12 ± 2 GPa), compared with the properties at room temperature (371 ± 31 MPa, 31 ± 2 GPa). While, the flexural strength and elastic modulus of Cf/SiBCN composites with PyC/SiC multilayered interphase at 1600°C are as high as 330 ± 7 MPa and 30 ± 2 GPa, respectively, which are 97% and 73% of the values at room temperature (341 ± 20 MPa, 41 ± 2 GPa). To clarify the effect mechanism of the interphase on mechanical properties of the Cf/SiBCN composites at elevated temperature, interfacial bonding strength (IFBS) and microstructures of the composites were investigated in detail. It reveals that the PyC/SiC multilayered interphase can retard the SiBCN matrix degradation at elevated temperature, leading to the high strength retention of the composites at 1600°C.  相似文献   

19.
Qingqing Yuan 《Polymer》2010,51(21):4843-4849
An all-silk composite, in which uniaxially-aligned and continuous-typed Bombyx mori silk fibers were embedded in a matrix of silk protein (fibroin), was successfully prepared via a solution casting process. The structure, morphology, mechanical and thermal properties of such silk fiber/fibroin composites were investigated with X-ray diffraction, scanning electron microscopy, tensile and compression tests, dynamic mechanical analysis and thermogravimetric analysis. The results demonstrated that the interface adhesion between silk fiber and the fibroin matrix was enhanced by controlling the fiber dissolution through 6 mol L−1 LiBr aqueous solution. Compare to those of the pure fibroin counterparts, the overall mechanical properties as well as the thermal stability of such silk fiber/fibroin composites were significantly improved. For example, the composite with 25 wt% fibers showed a breaking stress of 151 MPa and a breaking elongation of 27.1% in the direction parallel to the fiber array, and a compression modulus of 1.1 GPa in the perpendicular direction. The pure fibroin matrix (film), on the other hand, typically had a breaking stress of 60 MPa, a breaking elongation of 2.1% and a compression modulus of 0.5 GPa, respectively. This work suggests that such a controllable technique may help in the preparation of animal silk based materials with promising properties for various applications.  相似文献   

20.
Carbon fibers have been processed from gel spun polyacrylonitrile copolymer on a continuous carbonization line at Georgia Tech (GT) with a tensile strength in the range of 5.5–5.8 GPa, and tensile modulus in the range of 354–375 GPa. This combination of strength and modulus is the highest for any continuous fiber reported to date, and the gel spinning route provides a pathway for further improvements in strength and modulus for mass production of carbon fibers. At short gauge length, fiber tensile strength was as high as 12.1 GPa, which is the highest value ever reported for a PAN based carbon fiber. Structure analysis shows random flaws of about 2 nm size, which results in limiting tensile strength of higher than 20 GPa. Inter-planar turbostratic graphite shear modulus in high strength carbon fibers is 30 GPa, while in graphite the corresponding value is only 4 GPa.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号