首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 484 毫秒
1.
The histone deacetylases (HDACs) are able to regulate gene expression, and inhibitors of the HDACs (HDACIs) hold promise in the treatment of cancer as well as a variety of neurodegenerative diseases. To investigate the potential for isoform selectivity in the inhibition of HDACs, we prepared a small series of 2,4'-diaminobiphenyl ligands functionalized at the para-amino group with an appendage containing either a hydroxamate or a mercaptoacetamide group and coupled to an amino acid residue at the ortho-amino group. A smaller series of substituted phenylthiazoles was also explored. Some of these newly synthesized ligands show low-nanomolar potency in HDAC inhibition assays and display micromolar to low-nanomolar IC(50) values in tests against five pancreatic cancer cell lines. The isoform selectivity of these ligands for class I HDACs (HDAC1-3 and 8) and class IIb HDACs (HDAC6 and 10) together with QSAR studies of their correlation with lipophilicity are presented. Of particular interest is the selectivity of the mercaptoacetamides for HDAC6.  相似文献   

2.
Today, cancer is understood as an epigenetic as well as genetic disease. The main epigenetic hallmarks of the cancer cell are DNA methylation and histone modifications. Proteins such as histone deacetylases (HDACs) that cause modifications of histones and other proteins can be targets for novel anticancer agents. Recently, interest in compounds that can inhibit HDACs increased, and now there are many HDACs inhibitors (HDACIs) available with different chemical structures, biological and biochemical properties; hopefully some of them will succeed, probably in combination with other agents, in cancer therapies. In our study we focused on the novel HDACI–BML-210. We found that BML-210 (N-phenyl-Nʹ-(2-Aminophenyl)hexamethylenediamide) inhibits the growth of NB4 cells in dose- and time-dependent manner. In this study we also examined how expression and activity of HDACs are affected after leukemia cell treatment with BML-210. Using a mass spectrometry method we identified proteins that changed expression after treatment with BML-210. We prepared RT-PCR analysis of these genes and the results correlated with proteomic data. Based on these and other findings from our group, we suggest that HDACIs, like BML-210, can be promising anticancer agents in promyelocytic leukemia treatment.  相似文献   

3.
Histone deacetylases (HDACs) are conserved enzymes that remove acetyl groups from lysine side chains in histones and other proteins and play a crucial role in epigenetic regulation. Previously, we showed that histone acetylation is implicated in ultraviolet (UV)-induced inflammation and matrix impairment. To elucidate the histone acetylation status and specific HDACs involved in skin aging, we examined the changes in histone acetylation, global HDAC activity, and the expression of HDACs and sirtuins (SIRTs) in intrinsically aged and photoaged human skin as well as in UV-irradiated human skin in vivo. Following acute UV irradiation, the acetylated histone H3 (AcH3) level was increased, but HDAC activity and the expression levels of HDAC4, HDAC11, and SIRT4 were significantly decreased. In intrinsically aged skin, AcH3 levels were increased, but HDAC activity and the expression levels of HDAC4, HDAC5, HDAC10, HDAC11, SIRT6, and SIRT7 were significantly decreased. However, histone acetylation and HDAC expression in photoaged skin were not significantly different from those in intrinsically aged skin. Collectively, HDAC4 and HDAC11 were decreased in both UV-irradiated and intrinsically aged skin, suggesting that they may play a universal role in increased histone acetylation associated with skin aging.  相似文献   

4.
Histone deacetylases (HDACs) are important epigenetic regulators involved in many diseases, especially cancer. Five HDAC inhibitors have been approved for anticancer therapy and many are in clinical trials. Among the 11 zinc-dependent HDACs, HDAC10 has received relatively little attention by drug discovery campaigns, despite its involvement, e. g., in the pathogenesis of neuroblastoma. This is due in part to a lack of robust enzymatic conversion assays. In contrast to the protein lysine deacetylase and deacylase activity of most other HDAC subtypes, it has recently been shown that HDAC10 has strong preferences for deacetylation of oligoamine substrates like acetyl-putrescine or -spermidine. Hence, it is also termed a polyamine deacetylase (PDAC). Here, we present the first fluorescent enzymatic conversion assay for HDAC10 using an aminocoumarin-labelled acetyl-spermidine derivative to measure its PDAC activity, which is suitable for high-throughput screening. Using this assay, we identified potent inhibitors of HDAC10-mediated spermidine deacetylation in vitro. Based on the oligoamine preference of HDAC10, we also designed inhibitors with a basic moiety in appropriate distance to the zinc binding hydroxamate that showed potent inhibition of HDAC10 with high selectivity, and we solved a HDAC10-inhibitor structure using X-ray crystallography. We could demonstrate selective cellular target engagement for HDAC10 but a lysosomal phenotype in neuroblastoma cells that was previously associated with HDAC10 inhibition was not observed. Thus, we have developed new chemical probes for HDAC10 that allow further clarification of the biological role of this enzyme.  相似文献   

5.
Histone deacetylases (HDACs) are important enzymes in epigenetic regulation and are therapeutic targets for cancer. Most zinc‐dependent HDACs induce proliferation, dedifferentiation, and anti‐apoptotic effects in cancer cells. We designed and synthesized a new series of pyridone‐based HDAC inhibitors that have a pyridone ring in the core structure and a conjugated system with an olefin connecting the hydroxamic acid moiety. Consequently, most of the selected pyridone‐based HDAC inhibitors showed similar or higher inhibition profiles in addition to remarkable metabolic stability against hydrolysis relative to the corresponding lactam‐based HDAC inhibitors. Furthermore, the selectivity of the novel pyridine‐based compounds was evaluated across all of the HDAC isoforms. One of these compounds, (E)‐N‐hydroxy‐3‐{1‐[3‐(naphthalen‐2‐yl)propyl]‐2‐oxo‐1,2‐dihydropyridin‐3‐yl}acrylamide, exhibited the highest level of HDAC inhibition (IC50=0.07 μM ), highly selective inhibition of class I HDAC1 and class II HDAC6 enzymes, metabolic stability in mouse liver microsomal studies, and effective growth inhibition of various cancer cell lines. Docking studies indicated that a long alkyl linker and bulky hydrophobic cap groups affect in vitro activities. Overall, the findings reported herein regarding pyridone‐based HDAC inhibitors can be used to guide future research efforts to develop new and effective anticancer therapeutics.  相似文献   

6.
7.
Epigenetic regulation by histone deacetylase (HDAC) is associated with synaptic plasticity and memory formation, and its aberrant expression has been linked to cognitive disorders, including Alzheimer’s disease (AD). This study aimed to investigate the role of class IIa HDAC expression in AD and monitor it in vivo using a novel radiotracer, 6-(tri-fluoroacetamido)-1-hexanoicanilide ([18F]TFAHA). A human neural cell culture model with familial AD (FAD) mutations was established and used for in vitro assays. Positron emission tomography (PET) imaging with [18F]TFAHA was performed in a 3xTg AD mouse model for in vivo evaluation. The results showed a significant increase in HDAC4 expression in response to amyloid-β (Aβ) deposition in the cell model. Moreover, treatment with an HDAC4 selective inhibitor significantly upregulated the expression of neuronal memory-/synaptic plasticity-related genes. In [18F]TFAHA-PET imaging, whole brain or regional uptake was significantly higher in 3xTg AD mice compared with WT mice at 8 and 11 months of age. Our study demonstrated a correlation between class IIa HDACs and Aβs, the therapeutic benefit of a selective inhibitor, and the potential of using [18F]TFAHA as an epigenetic radiotracer for AD, which might facilitate the development of AD-related neuroimaging approaches and therapies.  相似文献   

8.
9.
A series of amidopropenyl hydroxamic acid derivatives were prepared as novel inhibitors of human histone deacetylases (HDACs). Several compounds showed potency at <100 nM in the HDAC inhibition assays, sub‐micromolar IC50 values in tests against three tumor cell lines, and remarkable stability in human and mouse microsomes was observed. Three representative compounds were selected for further characterization and submitted to a selectivity profile against a series of class I and class II HDACs as well as to preliminary in vivo pharmacokinetic (PK) experiments. Despite their high microsomal stability, the compounds showed medium‐to‐high clearance rates in in vivo PK studies as well as in rat and human hepatocytes, indicating that a major metabolic pathway is catalyzed by non‐microsomal enzymes.  相似文献   

10.
11.
Zinc‐dependent histone deacetylases (HDACs), a family of hydrolases that remove acetyl groups from lysine residues, play an important role in the regulation of multiple processes, from gene expression to protein activity. The dysregulation of HDACs is associated with many diseases including cancer, neurological disorders, cellular metabolism disorders, and inflammation. Molecules that act as HDAC inhibitors (HDACi) exhibit a variety of related bioactivities. In particular, HDACi have been applied clinically for the treatment of cancers. Inhibition through competitive binding of the catalytic domain of these enzymes has been achieved by a diverse array of small‐molecule chemotypes, including a number of natural products. This review provides a systematic introduction of natural HDACi, with an emphasis on their enzyme inhibitory potency, selectivity, and biological activities, highlighting their various binding modes with HDACs.  相似文献   

12.
Class I histone deacetylases (HDACs) are promising targets for epigenetic therapies for a range of diseases such as cancers, inflammations, infections and neurological diseases. Although six HDAC inhibitors are now licensed for clinical treatments, they are all pan-inhibitors with little or no HDAC isoform selectivity, exhibiting undesirable side effects. A major issue with the currently available HDAC inhibitors is that they have limited specificity and target multiple deacetylases. Except for HDAC8, Class I HDACs (1, 2 and 3) are recruited to large multiprotein complexes to function. Therefore, there are rising needs to develop new, hopefully, therapeutically efficacious HDAC inhibitors with isoform or complex selectivity. Here, upon the introduction of the structures of Class I HDACs and their complexes, we provide an up-to-date overview of the structure-based discovery of Class I HDAC inhibitors, including pan-, isoform-selective and complex-specific inhibitors, aiming to provide an insight into the discovery of additional HDAC inhibitors with greater selectivity, specificity and therapeutic utility.  相似文献   

13.
Globally, breast cancer has remained the most commonly diagnosed cancer and the leading cause of cancer death among women. Breast cancer is a highly heterogeneous and phenotypically diverse group of diseases, which require different selection of treatments. Breast cancer stem cells (BCSCs), a small subset of cancer cells with stem cell-like properties, play essential roles in breast cancer progression, recurrence, metastasis, chemoresistance and treatments. Epigenetics is defined as inheritable changes in gene expression without alteration in DNA sequence. Epigenetic regulation includes DNA methylation and demethylation, as well as histone modifications. Aberrant epigenetic regulation results in carcinogenesis. In this review, the mechanism of epigenetic regulation involved in carcinogenesis, therapeutic resistance and metastasis of BCSCs will be discussed, and finally, the therapies targeting these biomarkers will be presented.  相似文献   

14.
Cancer is a complex disease involving alterations of multiple processes, with both genetic and epigenetic features contributing as core factors to the disease. In recent years, it has become evident that non-coding RNAs (ncRNAs), an epigenetic factor, play a key role in the initiation and progression of cancer. MicroRNAs, the most studied non-coding RNAs subtype, are key controllers in a myriad of cellular processes, including proliferation, differentiation, and apoptosis. Furthermore, the expression of miRNAs is controlled, concomitantly, by other epigenetic factors, such as DNA methylation and histone modifications, resulting in aberrant patterns of expression upon the occurrence of cancer. In this sense, aberrant miRNA landscape evaluation has emerged as a promising strategy for cancer management. In this review, we have focused on the regulation (biogenesis, processing, and dysregulation) of miRNAs and their role as modulators of the epigenetic machinery. We have also highlighted their potential clinical value, such as validated diagnostic and prognostic biomarkers, and their relevant role as chromatin modifiers in cancer therapy.  相似文献   

15.
Lysine demethylase 5 C (KDM5C) controls epigenetic gene expression and is attracting great interest in the field of chemical epigenetics. KDM5C has emerged as a therapeutic target for anti-prostate cancer agents, and recently we identified triazole 1 as an inhibitor of KDM5C. Compound 1 exhibited highly potent KDM5C-inhibitory activity in in vitro enzyme assays, but did not show strong anticancer effects. Therefore, a different approach is needed for the development of anticancer agents targeting KDM5C. Here, we attempted to identify KDM5C degraders by focusing on a protein-knockdown strategy. Compound 3 b , which was designed based on compound 1 , degraded KDM5C and inhibited the growth of prostate cancer PC-3 cells more strongly than compound 1 . These findings suggest that KDM5C degraders are more effective as anticancer agents than compounds that only inhibit the catalytic activity of KDM5C.  相似文献   

16.
The involvement of epigenetic aberrations in the development and progression of tumors is now well established. However, most studies have focused on the epigenetic inactivation of tumor suppressor genes during tumorigenesis and little is known about the epigenetic activation of cancer-associated genes, except for the DNA hypomethylation of some genes. Recently, we reported that the overexpression of cancer-promoting genes in ovarian cancer is associated with the loss of repressive histone modifications. This discovery suggested that epigenetic derepression may contribute to ovarian tumorigenesis by constituting a possible mechanism for the overexpression of oncogenes or cancer-promoting genes in tumors. The emerging importance of epigenetic aberrations in tumor initiation and in the regulation of cancer-initiating cells, suggests that epigenetically regulated genes may be promising therapeutic targets and biomarkers. Given that the current challenges in ovarian cancer include the identification of biomarkers for early cancer detection and the discovery of novel therapeutic targets for patients with recurrent malignancies undergoing chemotherapy, understanding the epigenetic changes that occur in ovarian cancer is crucial. This review looks at epigenetic mechanisms involved in the regulation of cancer-associated genes, including the contribution of epigenetic derepression to the activation of cancer-associated genes in ovarian cancer. In addition, possible epigenetic therapies targeting epigenetically dysregulated genes are discussed. A better understanding of the epigenetic changes in ovarian cancer will contribute to the improvement of patient outcomes.  相似文献   

17.
18.
New chimeric inhibitors targeting the epidermal growth factor (EGFR) and histone deacetylases (HDACs) were synthesized and tested for antineoplastic efficiency in solid cancer (prostate and hepatocellular carcinoma) and leukemia/lymphoma cell models. The most promising compounds, 3BrQuin-SAHA and 3ClQuin-SAHA, showed strong inhibition of tumor cell growth at one-digit micromolar concentrations with IC50 values similar to or lower than those of clinically established reference compounds SAHA and gefitinib. Target-specific EGFR and HDAC inhibition was demonstrated in cell-free kinase assays and Western blot analyses, while unspecific cytotoxic effects could not be observed in LDH release measurements. Proapoptotic formation of reactive oxygen species and caspase-3 activity induction in PCa and HCC cell lines DU145 and Hep-G2 seem to be further aspects of the modes of action. Antiangiogenic potency was recognized after applying the chimeric inhibitors on strongly vascularized chorioallantoic membranes of fertilized chicken eggs (CAM assay). The novel combination of two drug pharmacophores against the EGFR and HDACs in one single molecule was shown to have pronounced antineoplastic effects on tumor growth in both solid and leukemia/lymphoma cell models. The promising results merit further investigations to further decipher the underlying modes of action of the novel chimeric inhibitors and their suitability for new clinical approaches in tumor treatment.  相似文献   

19.
5-Methylcytosine and 5-hydroxymethylcytosine are epigenetic modifications involved in gene regulation and cancer. We present a new, simple, and high-throughput platform for multi-color epigenetic analysis. The novelty of our approach is the ability to multiplex methylation and de-methylation signals in the same assay. We utilize an engineered methyltransferase enzyme that recognizes and labels all unmodified CpG sites with a fluorescent cofactor. In combination with the already established labeling of the de-methylation mark 5-hydroxymethylcytosine via enzymatic glycosylation, we obtained a robust platform for simultaneous epigenetic analysis of these marks. We assessed the global epigenetic levels in multiple samples of colorectal cancer and observed a 3.5-fold reduction in 5hmC levels but no change in DNA methylation levels between sick and healthy individuals. We also measured epigenetic modifications in chronic lymphocytic leukemia and observed a decrease in both modification levels (5-hydroxymethylcytosine: whole blood 30 %; peripheral blood mononuclear cells (PBMCs) 40 %. 5-methylcytosine: whole blood 53 %; PBMCs 48 %). Our findings propose using a simple blood test as a viable method for analysis, simplifying sample handling in diagnostics. Importantly, our results highlight the assay‘s potential for epigenetic evaluation of clinical samples, benefiting research and patient management.  相似文献   

20.
Carcinogenesis involves uncontrolled cell growth, which follows the activation of oncogenes and/or the deactivation of tumor suppression genes. Metastasis requires down-regulation of cell adhesion receptors necessary for tissue-specific, cell–cell attachment, as well as up-regulation of receptors that enhance cell motility. Epigenetic changes, including histone modifications, DNA methylation, and DNA hydroxymethylation, can modify these characteristics. Targets for these epigenetic changes include signaling pathways that regulate apoptosis and autophagy, as well as microRNA. We propose that predisposed normal cells convert to cancer progenitor cells that, after growing, undergo an epithelial-mesenchymal transition. This process, which is partially under epigenetic control, can create a metastatic form of both progenitor and full-fledged cancer cells, after which metastasis to a distant location may occur. Identification of epigenetic regulatory mechanisms has provided potential therapeutic avenues. In particular, epigenetic drugs appear to potentiate the action of traditional therapeutics, often by demethylating and re-expressing tumor suppressor genes to inhibit tumorigenesis. Epigenetic drugs may inhibit both the formation and growth of cancer progenitor cells, thus reducing the recurrence of cancer. Adopting epigenetic alteration as a new hallmark of cancer is a logical and necessary step that will further encourage the development of novel epigenetic biomarkers and therapeutics.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号